設(shè){an}(n∈N*)為等差數(shù)列,則使|a1|+|a2|+…+|an|=|a1+1|+|a2+1|+…+|an+1|=|a1+2|+|a2+2|+…+|an+2|=|a1+3|+|a2+3|+…+|an+3|=2010成立的數(shù)列{an}的項(xiàng)數(shù)n的最大值是________.

50
分析:根據(jù)等差數(shù)列|a1|+|a2|+…+|an|=|a1+1|+|a2+1|+…+|an+1|=|a1+2|+|a2+2|+…+|an+2|=|a1+3|+|a2+3|+…+|an+3|=2010,可得數(shù)列{an}中 的有正有負(fù),不妨設(shè),根據(jù)題意可得d>3,根據(jù)|a1|+|a2|+…+|an|=2010,去絕對(duì)值求和,即可求得結(jié)果.
解答:{an}(n∈N*)為等差數(shù)列,因?yàn)閨a1|+|a2|+…+|an|=|a1+1|+|a2+1|+…+|an+1|=|a1+2|+|a2+2|+…+|an+2|=|a1+3|+|a2+3|+…+|an+3|,
∴{an}中的項(xiàng)一定滿足
且項(xiàng)數(shù)n為偶數(shù),設(shè)n=2k,k∈N*,等差數(shù)列的公差為d,首項(xiàng)為a1,不妨設(shè)
則a1<0,d>0,且ak+3<0,由可得d>3,
∴|a1|+|a2|+…+|an|=-a1-a2-…-ak+ak+1+ak+2+…+a2k=-2(a1+a2+…+ak)+(a1+a2+…+ak+ak+1+ak+2+…+a2k
=-2[ka1+d]+2ka1+d=k2d=2010,
∵d>3,
∴k2d=2010>3k2,解得k2<670,而k∈N*,
∴k≤25,故n≤50.
∴使|a1|+|a2|+…+|an|=|a1+1|+|a2+1|+…+|an+1|=|a1+2|+|a2+2|+…+|an+2|=|a1+3|+|a2+3|+…+|an+3|=2010成立的數(shù)列{an}的項(xiàng)數(shù)n的最大值是50.
故答案為:50.
點(diǎn)評(píng):本題考查了等差數(shù)列的性質(zhì),根據(jù)題意求出數(shù)列的項(xiàng)的特點(diǎn)和公差的范圍是解題的關(guān)鍵,屬中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè){an},{bn}是兩個(gè)數(shù)列,M(1,2),An(2,an),Bn(
n-1
n
,
2
n
)
為直角坐標(biāo)平面上的點(diǎn).對(duì)n∈N*,若三點(diǎn)M,An,B共線,
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列{bn}滿足:log2cn=
a1b1+a2b2+…+anbn
a1+a2+…+an
,其中{cn}是第三項(xiàng)為8,公比為4的等比數(shù)列.求證:點(diǎn)列P1(1,b1),P2(2,b2),…Pn(n,bn)在同一條直線上;
(3)記數(shù)列{an}、{bn}的前m項(xiàng)和分別為Am和Bm,對(duì)任意自然數(shù)n,是否總存在與n相關(guān)的自然數(shù)m,使得anBm=bnAm?若存在,求出m與n的關(guān)系,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=2x3-2x2+x+
1
2

(1)求證:f(x)在R上是增函數(shù);
(2)設(shè)a1=0,an+1=
1
2
f(an)
 (n∈N+),b1=
1
2
,bn+1=
1
2
f(bn)
 (n∈N+).
①用數(shù)學(xué)歸納法證明:0<an<bn
1
2
(n>1,n∈N);
②證明:bn+1-an+1
bn-an
2
 (n∈N).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

數(shù)列{an}滿足a1=2,an+1=
2n+1an
(n+
1
2
)an+2n
(n∈N*)

(1)設(shè)bn=
2n
an
,求數(shù)列{bn}的通項(xiàng)公式;
(2)設(shè)cn=
1
n(n+1)an+1
,數(shù)列{cn}的前n項(xiàng)和為Sn,求出Sn并由此證明:
5
16
Sn
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•揚(yáng)州模擬)已知等差數(shù)列{an}的各項(xiàng)均為正數(shù),其前n項(xiàng)和為Sn,首項(xiàng)a1=1.
(Ⅰ)若
S1
+
S3
=2
S2
,求S5;
(Ⅱ)若數(shù)列{an}中存在兩兩互異的正整數(shù)m、n、p同時(shí)滿足下列兩個(gè)條件:①m+p=2n;②
Sm
+
Sp
=2
Sn
,求數(shù)列的通項(xiàng)an
(Ⅲ)對(duì)于(Ⅱ)中的數(shù)列{an},設(shè)bn=3•(
1
2
)an
(n∈N*),集合Tn={bi•bj|1≤i≤j≤n,i,j∈N*},記集合Tn中所有元素之和Bn,試問(wèn):是否存在正整數(shù)n和正整數(shù)k,使得不等式
1
bnBn-k
+
1
k-bn+1Bn+1
>0
成立?若存在,請(qǐng)求出所有n和k的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)滿足f(x+y)=f(x)•f(y),且f(1)=
1
2

(1)當(dāng)x∈N+時(shí),求f(n)的表達(dá)式;
(2)設(shè)an=nf(n)
 (n∈N+)
,求證:a1+a2+…+an<2;
(3)設(shè)bn=
nf(n+1)
f(n)
 &(n∈N+),Sn=b1
+b2+…+bn
,求
lim
n→∞
(
1
S1
+
1
S2
+…+
1
Sn
)

查看答案和解析>>

同步練習(xí)冊(cè)答案