【題目】如圖,四棱錐 底面為正方形,已知 ,,點 為線段 上任意一點(不含端點),點 在線段 上,且

(1)求證:

(2)若 為線段 中點,求直線 與平面 所成的角的余弦值.

【答案】(1)見解析(2)

【解析】試題分析:(1)延長,于點,由相似三角形的性質(zhì)可知 ,從而得,利用線面平行的判定定理可得直線平面;(2)由于 ,, 兩兩垂直,所以,軸建立空間直角坐標系,設 ,求出相關點的坐標及直線 的方向向量,根據(jù)向量垂直數(shù)量積為零列方程組,求出平面 的一個法向量,空間向量夾角余弦公式,可求解 與平面 夾角的正弦值,進而可求余弦值.

試題解析:(1) 延長 ,交 于點 ,連接 ,

由相似知 ,可得:,

,,

(2) 由于 , 兩兩垂直,

, ,, 軸建立空間直角坐標系,

,則 ,,,,

,平面 的法向量為 ,

設向量 的夾角為 ,則 ,

與平面 夾角的余弦值為

【方法點晴】本題主要考查線面平行的判定定理以及利用空間向量求線面角,屬于難題.空間向量解答立體幾何問題的一般步驟是:(1)觀察圖形,建立恰當?shù)目臻g直角坐標系;(2)寫出相應點的坐標,求出相應直線的方向向量;(3)設出相應平面的法向量,利用兩直線垂直數(shù)量積為零列出方程組求出法向量;(4)將空間位置關系轉(zhuǎn)化為向量關系;(5)根據(jù)定理結(jié)論求出相應的角和距離.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知⊙H被直線x-y-1=0,x+y-3=0分成面積相等的四個部分,且截x軸所得線段的長為2。

(I)求⊙H的方程;

()若存在過點P(0,b)的直線與⊙H相交于M,N兩點,且點M恰好是線段PN的中點,求實數(shù)b的取值范圍

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知, 是拋物線上兩點,且兩點橫坐標之和為3.

(1)求直線的斜率;

(2)若直線,直線與拋物線相切于點,且,求方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點,圓,點是圓上一動點, 的垂直平分線與交于點.

1)求點的軌跡方程;

2)設點的軌跡為曲線,過點且斜率不為0的直線交于兩點,點關于軸的對稱點為,證明直線過定點,并求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】P2P平臺需要了解該平臺投資者的大致年齡分布,發(fā)現(xiàn)其投資者年齡大多集中在區(qū)間[20,50]歲之間,對區(qū)間[20,50]歲的人群隨機抽取20人進行了一次理財習慣調(diào)查,得到如下統(tǒng)計表和各年齡段人數(shù)頻率分布直方圖:

組數(shù)

分組

人數(shù)(單位:人)

第一組

[20,25)

2

第二組

[25,30)

a

第三組

[30,35)

5

第四組

[35,40)

4

第五組

[40,45)

3

第六組

[45,50]

2

 

()a的值并畫出頻率分布直方圖;

()在統(tǒng)計表的第五與第六組的5人中,隨機選取2人,求這2人的年齡都小于45歲的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】共享單車給市民出行帶來了諸多便利,某公司購買了一批單車投放到某地給市民使用.據(jù)市場分析,每輛單車的營運累計收入 (單位:元)與營運天數(shù)滿足.

(1)要使營運累計收入高于800元,求營運天數(shù)的取值范圍;

(2)每輛單車營運多少天時,才能使每天的平均營運收入最大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知命題:若關于的方程無實數(shù)根,則;命題:若關于的方程有兩個不相等的正實數(shù)根,則.

(1)寫出命題的否命題,并判斷命題的真假;

(2)判斷命題“”的真假,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某公司經(jīng)營一種二手機械,對該型號機械的使用年數(shù)與再銷售價格(單位:百萬元/臺)進行統(tǒng)計整理,得到如下關系:

使用年數(shù)

2

4

6

8

10

再銷售價格

16

13

9.5

7

5

(1)求關于的回歸直線方程

(2)該機械每臺的收購價格為(百萬元),根據(jù)(1)中所求的回歸方程,預測為何值時,此公司銷售一臺該型號二手機械所獲得的利潤最大?

附:參考公式:,.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)f(x)對任意的mnR都有f(mn)=f(m)+f(n)-1,并且x>0時,恒有f(x)>1.

(1)求證:f(x)R上是增函數(shù);

(2)f(3)=4,解不等式f(a2a-5)<2

查看答案和解析>>

同步練習冊答案