(2010•臺州二模)“
1
3
<x<
1
2
”是“不等式|x-1|<1成立”的(  )
分析:利用絕對值不等式的解法化簡條件“不等式|x-1|<1成立”,判斷出兩個集合的包含關系,根據(jù)小范圍成立大范圍內(nèi)就成立,判斷出前者是后者的充分不必要條件.
解答:解:因為|x-1|<1?-1<x-1<1?0<x<2,
因為{x|
1
3
<x<
1
2
}?{x|0<x<2},
所以“
1
3
<x<
1
2
”是“不等式|x-1|<1成立”的充分不必要條件,
故選A
點評:本題考查判斷一個命題是另一個命題的什么條件,應該先化簡各個命題,若命題是一些數(shù)集,可轉(zhuǎn)化為集合間的包含關系,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2010•臺州二模)已知函數(shù)f(x)=x|x-a|+x-2在R上恒為增函數(shù),則a的取值范圍是
[-1,1]
[-1,1]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2010•臺州二模)已知等差數(shù)列{an}中,a1+a5+a9=
π
4
,則sin(a4+a6)=
1
2
1
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2010•臺州二模)一個空間幾何體的三視圖如右圖所示,其中主視圖和側(cè)視圖都是半徑為1的圓,且這個幾何體是球體的一部分,則這個幾何體的表面積為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2010•臺州二模)若P0(x0,y0)在橢圓
x2
a2
+
y2
b2
=1
外,則過P0作橢圓的兩條切線的切點為P1,P2,則切點弦P1P2所在直線方程是
x0x
a2
+
y0y
b2
=1
.那么對于雙曲線則有如下命題:若P0(x0,y0)在雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)
外,則過P0作雙曲線的兩條切線的切點為P1,P2,則切點弦P1P2的所在直線方程是
x0x
a2
-
y0y
b2
=1
x0x
a2
-
y0y
b2
=1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2010•臺州二模)“x>2且y>2”是“x+y>4”的(  )

查看答案和解析>>

同步練習冊答案