在f(m,n)中,m,n,f(m,n)∈N*,且對(duì)任何m,n都有:(1)f(1,1)=1;(2)f(m,n+1)=f(m,n)+2;(3)f(m+1,1)=2f(m,1),給出以下三個(gè)結(jié)論:①f(1,5)=9;②f(5,1)=16;③f(5,6)=26其中正確的個(gè)數(shù)為
3
3
個(gè).
分析:由已知中對(duì)任意m、n∈N*都有:①f(m,n+1)=f(m,n)+2;②f(m+1,1)=2f(m,1).我們易推斷出,f(n,1)=2n-1,f(n,1)=2n-1,f(m,n+1)=2m-1+2n,進(jìn)而判斷已知中三個(gè)結(jié)論,即可得到答案.
解答:解:∵f(m,n+1)=f(m,n)+2
∴f(1,n)=2n-1
故(1)f(1,5)=9正確;
又∵f(m+1,1)=2f(m,1)
∴f(n,1)=2n-1
∴(2)f(5,1)=16也正確;
則f(m,n+1)=2m-1+2n
∴(3)f(5,6)=26也正確
故答案為:3.
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是抽象函數(shù)及其應(yīng)用,其中根據(jù)已知條件推斷出:f(n,1)=2n-1,f(n,1)=2n-1,f(m,n+1)=2m-1+2n,是解答本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在f(m,n)中,m,n,f(m,n)∈N+,且對(duì)任何m、n都有:(Ⅰ)f(1,1)=1,(Ⅱ)f(m,n+1)=f(m,n)+2,(Ⅲ)f(m+1,1)=2f(m,1).
給出下列四個(gè)結(jié)論:
①f(1,5)=9; ②f(5,1)=16;
③f(5,6)=26;④f(5,3)=20.
其中正確的結(jié)論是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在f(m,n)中,m、n、f(m,n)∈N*,且對(duì)任何m,n都有:
(i)f(1,1)=1;
(ii)f(m,n+1)=f(m,n)+3;
(iii)f(m+1,1)=2f(m,1),給出以下三個(gè)結(jié)論:
(1)f(1,5)=13;(2)f(5,1)=16;(3)f(5,6)=26
其中正確的個(gè)數(shù)為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在f(m,n)中,m,n,f(m,n)∈N*,且對(duì)任何m,n都有:
(Ⅰ)f(1,1)=1,
(Ⅱ)f(m,n+1)=f(m,n)+2,
(Ⅲ)f(m+1,1)=2f(m,1).
給出下列三個(gè)結(jié)論:
①f(1,5)=9;  ②f(5,1)=16;   ③f(5,6)=26.
其中正確的結(jié)論個(gè)數(shù)是(  )個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2009-2010學(xué)年重慶八中高三(上)第一次月考數(shù)學(xué)試卷(理科)(解析版) 題型:選擇題

在f(m,n)中,m,n,f(m,n)∈N*,且對(duì)任何m,n都有:
(Ⅰ)f(1,1)=1,
(Ⅱ)f(m,n+1)=f(m,n)+2,
(Ⅲ)f(m+1,1)=2f(m,1).
給出下列三個(gè)結(jié)論:
①f(1,5)=9;  ②f(5,1)=16;   ③f(5,6)=26.
其中正確的結(jié)論個(gè)數(shù)是( )個(gè).
A.3
B.2
C.1
D.0

查看答案和解析>>

同步練習(xí)冊(cè)答案