設(shè)f(x)=
|x-1|-
5
2
,(|x|≤1)
1
1+x2
,(|x|>1)
,則f[f(
1
2
)]
=______.
∵f(x)=
|x-1|-
5
2
,(|x|≤1)
1
1+x2
,(|x|>1)
,
f[f(
1
2
)]
=f(-2)=
1
1+4
=
1
5

故答案為
1
5
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)y=f(x)定義在R上,對(duì)于任意實(shí)數(shù)m,n,恒有f(m+n)=f(m)•f(n),且當(dāng)x>0時(shí),0<f(x)<1
(1)求證:f(0)=1且當(dāng)x<0時(shí),f(x)>1
(2)求證:f(x)在R上是減函數(shù);
(3)設(shè)集合A=(x,y)|f(-x2+6x-1)•f(y)=1,B=(x,y)|y=a,
且A∩B=∅,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數(shù)y=f(x)圖象上的點(diǎn)到直線x-y-3=0距離的最小值為
2
,求a的值;
(2)關(guān)于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個(gè),求實(shí)數(shù)a的取值范圍;
(3)對(duì)于函數(shù)f(x)與g(x)定義域上的任意實(shí)數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱(chēng)直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設(shè)a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)函數(shù)y=f(x)定義在R上,對(duì)于任意實(shí)數(shù)m,n,恒有f(m+n)=f(m)•f(n),且當(dāng)x>0時(shí),0<f(x)<1
(1)求證:f(0)=1且當(dāng)x<0時(shí),f(x)>1
(2)求證:f(x)在R上是減函數(shù);
(3)設(shè)集合A=(x,y)|f(-x2+6x-1)•f(y)=1,B=(x,y)|y=a,
且A∩B=∅,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)f(x)是定義在集合D上的函數(shù),若對(duì)集合D中的任意兩數(shù)x1,x2恒有數(shù)學(xué)公式成立,則f(x)是定義在D上的β函數(shù).
(1)試判斷f(x)=x2是否是其定義域上的β函數(shù)?
(2)設(shè)f(x)是定義在R上的奇函數(shù),求證:f(x)不是定義在R上的β函數(shù).
(3)設(shè)f(x)是定義在集合D上的函數(shù),若對(duì)任意實(shí)數(shù)α∈[0,1]以及集合D中的任意兩數(shù)x1,x2恒有f(αx1+(1-α)x2)≤αf(x1)+(1-α)f(x2),則稱(chēng)f(x)是定義在D上的α-β函數(shù).已知f(x)是定義在R上的α-β函數(shù),m是給定的正整數(shù),設(shè)an=f(n),n=1,2,3…m且a0=0,am=2m,記∫=a1+a2+a3+…+am,對(duì)任意滿(mǎn)足條件的函數(shù)f(x),求∫的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年浙江省臺(tái)州市仙居縣宏大中學(xué)高一(上)期中數(shù)學(xué)試卷(解析版) 題型:解答題

設(shè)函數(shù)y=f(x)定義在R上,對(duì)于任意實(shí)數(shù)m,n,恒有f(m+n)=f(m)•f(n),且當(dāng)x>0時(shí),0<f(x)<1
(1)求證:f(0)=1且當(dāng)x<0時(shí),f(x)>1
(2)求證:f(x)在R上是減函數(shù);
(3)設(shè)集合A=(x,y)|f(-x2+6x-1)•f(y)=1,B=(x,y)|y=a,
且A∩B=∅,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案