以相交兩圓C: x+y+4x+1=0及C: x+y+2x+2y+1=0的公共弦為直徑的圓的方程(   )

A (x-1)+(y-1)=1

B (x+1)+(y+1)=1

C (x+)+(y+)=

D(x-)+(y-)=

 

【答案】

B

【解析】略

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)動圓M滿足條件p:經(jīng)過點F(
1
2
,0)
,且與直線l:x=-
1
2
相切;記動圓圓心M的軌跡為C.
(Ⅰ)求軌跡C的方程;
(Ⅱ)已知點M1為軌跡C上縱坐標為m的點,以M1為圓心滿足條件p的圓與x軸相交于點F、A(A在F的右側(cè)),又直線AM1與軌跡C相交于兩個不同點M1、M2,當(dāng)OM1⊥OM2(O為坐標原點)時,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

選做題:(考生可以在以下三個題任選一道題作答,如果多做以考生所作的第一道題為準)
(a) 不等式|x-4|-|x-2|>1的解集為
(-∞,
5
2
)
(-∞,
5
2
)

(b) 已知直線l的極坐標方程為:ρcosθ-ρsinθ-
2
=0
,圓C的參數(shù)方程為
x=cosθ
y=sinθ
(θ為參數(shù)),那么直線l與圓C的位置關(guān)系為
相切
相切

(c) 如圖已知圓中兩條弦AB與CD相交于點F,E是AB延長線上一點,且DF=CF=
2
,AF:FB:BE=4:2:1
.若CE與圓相切,則CE的長為
7
2
7
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知位于y軸右側(cè)的圓C與y相切于點P(0,1),與x軸相交于點A、B,且被x軸分成的兩段弧之比為1﹕2(如圖所示).
 (I)求圓C的方程;
(II)若經(jīng)過點(1,0)的直線l與圓C相交于點E、F,且以線段EF為直徑的圓恰好過圓心C,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知位于y軸左側(cè)的圓C與y軸相切于點(0,1)且被x軸分成的兩段圓弧長之比為1:2,過點H(0,t)的直線l于圓C相交于M、N兩點,且以MN為直徑的圓恰好經(jīng)過坐標原點O.
(1)求圓C的方程;
(2)當(dāng)t=1時,求出直線l的方程;
(3)求直線OM的斜率k的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案