精英家教網 > 高中數學 > 題目詳情
設直線kx-y+1=0被圓O:x2+y2=4所截弦的中點的軌跡為C,則曲線C與直線x+y-1=0的位置關系為( )
A.相離
B.相切
C.相交
D.不確定
【答案】分析:設C上任意一點的坐標為A(x,y),由×k=-1,求出k后代入直線kx-y+1=0求得曲線C的方程,由圓心(0,)到直線x+y-1=0的距離小于半徑得到曲線C與直線x+y-1=0相交.
解答:解:弦的中點的軌跡為C,設C上任意一點的坐標為A( x,y ),則由弦的性質得 OA垂直于直線kx-y+1=0,
×k=-1,即 k=.又點A( x,y )還在直線kx-y+1=0上,
•x-y+1=0,x2+=,故曲線C表示以(0,)為圓心,以為半徑的圓.
∵圓心(0,)到直線x+y-1=0的距離等于 =(半徑),
故曲線C與直線x+y-1=0相交,
故選C.
點評:本題考查求點的軌跡方程的求法,直線和圓相交的性質,求曲線C的軌跡方程是解題的關鍵.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

設直線kx-y+1=0被圓O:x2+y2=4所截弦的中點的軌跡為C,則曲線C與直線x+y-1=0的位置關系為(  )
A、相離B、相切C、相交D、不確定

查看答案和解析>>

科目:高中數學 來源: 題型:

設直線kx-y+1=0被圓
x=2cosθ
y=2sinθ
為參數)所截弦的中點的軌跡為C,則曲線C與直線x+y-1=0的位置關系為(  )

查看答案和解析>>

科目:高中數學 來源:2011-2012學年安徽省高三第三次模擬考試理科數學試卷 題型:選擇題

設直線kx-y+1=0被圓O:所截弦的中點的軌跡為C,則曲線C與直線

x+y-1=0的位置關系為:(  )

A. 相交      B.相切        C. 相離      D.不確定

 

查看答案和解析>>

科目:高中數學 來源:2012-2013學年安徽省亳州二中高三(上)第四次月考數學試卷(理科)(解析版) 題型:選擇題

設直線kx-y+1=0被圓O:x2+y2=4所截弦的中點的軌跡為C,則曲線C與直線x+y-1=0的位置關系為( )
A.相離
B.相切
C.相交
D.不確定

查看答案和解析>>

同步練習冊答案