設(shè)函數(shù),記的導(dǎo)函數(shù),的導(dǎo)函數(shù)
,
的導(dǎo)函數(shù),…,的導(dǎo)函數(shù),.
(1)求;
(2)用n表示;
(3)設(shè),是否存在使最大?證明你的結(jié)論.
(1)(2)(3)故當(dāng)或時,取
最大值.
【解析】
試題分析:⑴易得,,
,所以
⑵不失一般性,設(shè)函數(shù)的導(dǎo)函數(shù)為
,其中,常數(shù),.
對求導(dǎo)得:
故由得: ①,
②, ③
由①得: ,
代入②得:,即,其中
故得:.
代入③得:,即,其中.
故得:,
因此.
將代入得:,其中.
(3)由(1)知,
當(dāng)時,,
,故當(dāng)最大時,為奇數(shù).
當(dāng)時,
又,
,
,因此數(shù)列是遞減數(shù)列
又,,
故當(dāng)或時,取最大值.
考點(diǎn):導(dǎo)數(shù) 數(shù)列綜合
點(diǎn)評:本題是數(shù)列綜合題,利用轉(zhuǎn)化法把非常規(guī)數(shù)列轉(zhuǎn)化成等差或等比數(shù)列來處理是關(guān)鍵,
屬難題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
f(2x) | e |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:陜西省西工大附中2010屆高三第五次適應(yīng)性訓(xùn)練理科數(shù)學(xué)試題 題型:044
已知函數(shù)f(x)=x3+bx2+cx+2.
(1)若f(x)在x=1時,有極值-1,求b、c的值.
(2)當(dāng)b為非零實(shí)數(shù)時,f(x)是否存在與直線(b2-c)x+y+1=0平行的切線,如果存在,求出切線的方程,如果不存在,說明理由.
(3)設(shè)函數(shù)f(x)的導(dǎo)函數(shù)為,記函數(shù)||(-1≤x≤1)的最大值為M,求證M≥.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(06年四川卷理)(12分)
已知數(shù)列,其中記數(shù)列的
前n項(xiàng)和為數(shù)列的前n項(xiàng)和為
(Ⅰ)求;
(Ⅱ) 設(shè) (其中為的導(dǎo)函數(shù)),計算
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年福建省福州外國語學(xué)校高三上學(xué)期期中考試文科數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題14分)設(shè)函數(shù).
(Ⅰ)討論的單調(diào)性;
(Ⅱ)已知,若函數(shù)的圖象總在直線的下方,求的取值范圍;
(Ⅲ)記為函數(shù)的導(dǎo)函數(shù).若,試問:在區(qū)間上是否存在()個正數(shù)…,使得成立?請證明你的結(jié)論.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com