命題p:實數(shù)x滿足x2-4ax+3a2<0(其中a>0);命題q:實數(shù)x滿足
(Ⅰ)若a=1,且p∧q為真,求實數(shù)x的取值范圍;
(Ⅱ)若¬p是¬q的充分不必要條件,求實數(shù)a的取值范圍.
【答案】分析:(I)將a=1代入,求出命題p為真時,x的范圍;進而解不等式組求命題q為真時,x的范圍,由p∧q為真,兩個命題均為真,構(gòu)造不等式組,即可得到實數(shù)x的取值范圍;
(Ⅱ)¬p是¬q的充分不必要條件,則¬p⇒¬q,且¬q?¬p,根據(jù)(I)中結(jié)論,構(gòu)造關(guān)于a的不等式,解得實數(shù)a的取值范圍
解答:解:(Ⅰ)由x2-4ax+3a2<0得(x-3a)(x-a)<0,
又a>0,所以a<x<3a,
當a=1時,1<x<3,即p為真時實數(shù)x的取值范圍是1<x<3.(2分)


解得2<x≤3,
即q為真時實數(shù)x的取值范圍是2<x≤3.(4分)
若p∧q為真,則p真且q真,
所以實數(shù)x的取值范圍是(2,3).(6分)
(Ⅱ)由(Ⅰ)知p:a<x<3a,
則¬p:x≤a或x≥3a,(8分)
q:2<x≤3,則¬q:x≤2或x>3,(10分)
¬p是¬q的充分不必要條件,則¬p⇒¬q,且¬q?¬p,

解得1<a≤2,
故實數(shù)a的取值范圍是(1,2].(12分)
點評:本題考查的知識點是命題的真假判斷,充要條件,其中根據(jù)復(fù)合命題的真值表及充要條件的定義,將問題轉(zhuǎn)化為不等式組,或集合關(guān)系問題是解答的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:2012-2013學年江蘇省揚州市邗江中學高二(上)期中數(shù)學試卷(解析版) 題型:解答題

設(shè)命題p:實數(shù)x滿足x2-4ax+3a2<0,其中a>0,命題q:實數(shù)x滿足
(Ⅰ)若a=1,且p∧q為真,求實數(shù)x的取值范圍;
(Ⅱ)若¬p是¬q的充分不必要條件,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年江蘇省揚州市邗江中學高二(上)期中數(shù)學試卷(解析版) 題型:解答題

設(shè)命題p:實數(shù)x滿足x2-4ax+3a2<0,其中a>0,命題q:實數(shù)x滿足
(Ⅰ)若a=1,且p∧q為真,求實數(shù)x的取值范圍;
(Ⅱ)若¬p是¬q的充分不必要條件,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:2011年《龍門亮劍》高三數(shù)學(理科)一輪復(fù)習:第1篇第2節(jié)(北師大版)(解析版) 題型:解答題

設(shè)命題p:實數(shù)x滿足x2-4ax+3a2<0,其中a>0,命題q:實數(shù)x滿足
(Ⅰ)若a=1,且p∧q為真,求實數(shù)x的取值范圍;
(Ⅱ)若¬p是¬q的充分不必要條件,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:2011年《龍門亮劍》高三數(shù)學(文科)一輪復(fù)習:第1章第2節(jié)(人教AB通用)(解析版) 題型:解答題

設(shè)命題p:實數(shù)x滿足x2-4ax+3a2<0,其中a>0,命題q:實數(shù)x滿足
(Ⅰ)若a=1,且p∧q為真,求實數(shù)x的取值范圍;
(Ⅱ)若¬p是¬q的充分不必要條件,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習冊答案