已知向量的夾角為60°,且,則的夾角等于( )
A.150°
B.90°
C.60°
D.30°
【答案】分析:根據(jù)題意并結(jié)合向量數(shù)量積的運算性質(zhì),分別算出||、||和的數(shù)量積,最后用向量夾角公式即可得到的夾角大。
解答:解:由題意可得=2×1cos60°=1,
設向量的夾角等于θ,
∵(2=-2+=4-2×1+1=3,(2=+4+4=4+4×1+4=12,
∴||=,||==2
而()()=+-2=4+1-2=3
由此可得cosθ===
再由 0°≤θ≤180°,可得θ=60°,
故選:C
點評:題主要考查兩個向量的夾角公式,兩個向量數(shù)量積公式,求向量的模的方法,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知向量
m
n
的夾角為
π
6
,且|
m
|=
3
|
n
|=2
,在△ABC中,
AB
=
m
+
n
,
AC
=
m
-3
n
,D為BC邊的中點,則|
AD
|
=( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
m
n
的夾角為
π
6
,且|
m
|=
3
,|
n
|=2,|
m
-
n
|
=( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,a、b、c分別為角A、B、C的對邊,已知向量
m
=(sinB,1-cosB)與向量
n
=(0,1) 的夾角為
π
6
,
求:(I) 角B 的大小;   (Ⅱ) 
a+c
b
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•孝感模擬)已知橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0)的左右焦點分別為F1、F2,P是橢圓上一點,向量
F1F2
與向量
F1P
的夾角為
π
6
,且
F1F2
F1P
上的投影的大小恰為|
F1P
|,則橢圓的離心率為(  )

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年湖北省黃岡市蘄春縣李時珍中學高三(上)第三次月考數(shù)學試卷(文科)(解析版) 題型:填空題

已知向量,的夾角為,且||=,||=2.在△ABC中,=2+2=2-6,D為BC邊的中點,則||=   

查看答案和解析>>

同步練習冊答案