(文科)對于二項(xiàng)式(n(n∈N*),4位同學(xué)作出了4種判斷:①存在n∈N*,使展開式中沒有常數(shù)項(xiàng);②對任意n∈N*,展開式中沒有常數(shù)項(xiàng);③對任意n∈N*,展開式中沒有x的一次項(xiàng);④存在n∈N*,使展開式中有x的一次項(xiàng).上述判斷中正確的是   
【答案】分析:利用其項(xiàng)Tr+1=•x4r-n對①②③④逐個分析,即可得到答案.
解答:解:設(shè)二項(xiàng)式(n(n∈N*)的通項(xiàng)為Tr+1,
則Tr+1=•xr-n•x3r=•x4r-n
顯然存在1∈N*,使展開式中沒有常數(shù)項(xiàng);故①正確;
不妨令n=4,r=1,展開式中有常數(shù)項(xiàng),故②錯誤;
再令n=3,r=1,則T2=x=3x,故③錯誤,而④正確.
綜上所述,判斷中正確的是①④.
故答案為:①④.
點(diǎn)評:本題考查二項(xiàng)式定理,關(guān)鍵在于合理利用其通項(xiàng)公式進(jìn)行綜合分析,考查學(xué)生分析問題解決問題的能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(文科)對于二項(xiàng)式(
1x
+x3
n(n∈N*),4位同學(xué)作出了4種判斷:①存在n∈N*,使展開式中沒有常數(shù)項(xiàng);②對任意n∈N*,展開式中沒有常數(shù)項(xiàng);③對任意n∈N*,展開式中沒有x的一次項(xiàng);④存在n∈N*,使展開式中有x的一次項(xiàng).上述判斷中正確的是
①④
①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

(文科)對于二項(xiàng)式(數(shù)學(xué)公式n(n∈N*),4位同學(xué)作出了4種判斷:①存在n∈N*,使展開式中沒有常數(shù)項(xiàng);②對任意n∈N*,展開式中沒有常數(shù)項(xiàng);③對任意n∈N*,展開式中沒有x的一次項(xiàng);④存在n∈N*,使展開式中有x的一次項(xiàng).上述判斷中正確的是________.

查看答案和解析>>

同步練習(xí)冊答案