10.已知f(x)是定義在R上的奇函數(shù),當(dāng)x≥0時(shí),f(x)=2x-x2,若存在實(shí)數(shù)a,b,使f(x)在[a,b]上的值域?yàn)閇$\frac{1}$,$\frac{1}{a}$],則ab=$\frac{1+\sqrt{5}}{2}$.

分析 根據(jù)題意,先由奇函數(shù)的性質(zhì),分析可得x<0時(shí),f(x)=x2+2x,對于正實(shí)數(shù)a、b,分三種情況討論:①、當(dāng)a<1<b時(shí),②、當(dāng)a<b<1時(shí),③、當(dāng)1≤a<b時(shí),結(jié)合二次函數(shù)的性質(zhì),分析可得a、b的值,將其相乘可得答案.

解答 解:設(shè)x<0,則-x>0,
∴f(-x)=-2x-(-x)2,即-f(x)=-x2-2x,
∴f(x)=x2+2x,設(shè)這樣的實(shí)數(shù)a,b存在,
則$\left\{\begin{array}{l}{{a}^{2}+2a=\frac{1}}\\{^{2}+2b=\frac{1}{a}}\end{array}\right.$或$\left\{\begin{array}{l}{{a}^{2}+2a=\frac{1}{a}}\\{^{2}+2b=\frac{1}}\end{array}\right.$或$\left\{\begin{array}{l}{\frac{1}{a}=1}\\{^{2}+2b=\frac{1}{a}=1}\end{array}\right.$,
由$\left\{\begin{array}{l}{{a}^{2}+2a=\frac{1}}\\{^{2}+2b=\frac{1}{a}}\end{array}\right.$得ab(a+b)=0,舍去;由$\left\{\begin{array}{l}{\frac{1}{a}=1}\\{^{2}+2b=\frac{1}{a}=1}\end{array}\right.$,得a=1,b=$\frac{-1+\sqrt{5}}{2}$矛盾,舍去;
由$\left\{\begin{array}{l}{{a}^{2}+2a=\frac{1}{a}}\\{^{2}+2b=\frac{1}}\end{array}\right.$得a,b是方程x3+2x2=1的兩個(gè)實(shí)數(shù)根,
由(x+1)(x2+x-1)=0
得a=$\frac{-1-\sqrt{5}}{2}$,b=-1,∴ab=$\frac{1+\sqrt{5}}{2}$,
故答案為$\frac{1+\sqrt{5}}{2}$.

點(diǎn)評 本題考查函數(shù)奇偶性與單調(diào)性的綜合,涉及二次函數(shù)的性質(zhì),注意先由奇函數(shù)的性質(zhì),求出x>0時(shí),f(x)的解析式.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.如圖,在△ABC中,點(diǎn)E為AB邊的中點(diǎn),點(diǎn)F在AC邊上,且CF=2FA,BF交CE于點(diǎn)M,設(shè)$\overrightarrow{AM}$=x$\overrightarrow{AE}$+y$\overrightarrow{AF}$,則x+y=$\frac{1}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知cos(x-$\frac{π}{4}$)=-$\frac{1}{3}$($\frac{5π}{4}$<x<$\frac{7π}{4}$),則sin2x-cos2x=( 。
A.$\frac{4\sqrt{2}-7}{9}$B.$\frac{-4\sqrt{2}-7}{9}$C.$\frac{4-7\sqrt{2}}{9}$D.$\frac{-4-7\sqrt{2}}{9}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知圓O:x2+y2=2,直線l:y=kx-2.
(1)若直線l與圓O交于不同的兩點(diǎn)A,B,當(dāng)$∠AOB=\frac{π}{2}$時(shí),求k的值;
(2)若$k=\frac{1}{2},P$是直線l上的動點(diǎn),過P作圓O的兩條切線PC、PD,切點(diǎn)為C、D,探究:直線CD是否過定點(diǎn)?若過定點(diǎn)則求出該定點(diǎn),若不存在則說明理由;
(3)若EF、GH為圓O:x2+y2=2的兩條相互垂直的弦,垂足為$M({1,\frac{{\sqrt{2}}}{2}})$,求四邊形EGFH的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知角α的終邊過點(diǎn)P(-8m,-6sin30°),且cosα=-$\frac{4}{5}$,則m的值為$\frac{1}{2}$,sinα=-$\frac{3}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知集合A={x|x2+2x-3>0},集合B是不等式x2+mx+1>0對于x∈R恒成立的m構(gòu)成的集合.
(1)求集合A與B;
(2)求(∁RA)∩B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知a=log36,b=1+3${\;}^{-lo{g}_{3}e}$,c=($\frac{2}{3}$)-1則a,b,c的大小關(guān)系為(  )
A.a>b>cB.b>a>cC.c>b>aD.a>c>b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知平面上動點(diǎn)P到A(-$\sqrt{2}$,0)、B($\sqrt{2}$,0)兩點(diǎn)的距離之差的絕對值等于2.
(1)判斷動點(diǎn)P的軌跡是何種圓錐曲線,并求出其軌跡方程.
(2)設(shè)點(diǎn)M的坐標(biāo)為($\frac{3}{2}$,0),求點(diǎn)M到上述曲線的最短距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如圖,在△ABC中,M為BC的中點(diǎn),$\overrightarrow{AN}=3\overrightarrow{NB}$.
(I)以$\overrightarrow{CA}$,$\overrightarrow{CB}$為基底表示$\overrightarrow{AM}$和$\overrightarrow{CN}$;
(II)若∠ABC=120°,CB=4,且AM⊥CN,求CA的長.

查看答案和解析>>

同步練習(xí)冊答案