【題目】已知復數(shù)z=3+bi(b∈R),且(1+3i)z為純虛數(shù).
(1)求復數(shù)z;
(2)若 ,求復數(shù)w的模|w|.

【答案】
(1)解:(1+3i)(3+bi)=(3﹣3b)+(9+b)i

∵(1+3i)z是純虛數(shù)

∴3﹣3b=0,且9+b≠0

∴b=1,∴z=3+i


(2)解:

=


【解析】(1)把復數(shù)z代入表達式,利用復數(shù)是純虛數(shù)健康求出z.(2)把z代入復數(shù)w的表達式,利用復數(shù)的除法運算的法則,化為a+bi的形式,然后求出復數(shù)的模即可.
【考點精析】關于本題考查的復數(shù)的模(絕對值),需要了解復平面內(nèi)復數(shù)所對應的點到原點的距離,是非負數(shù),因而兩復數(shù)的?梢员容^大小;復數(shù)模的性質(zhì):(1)(2)(3)若為虛數(shù),則才能得出正確答案.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知三棱柱ABC﹣A1B1C1的側(cè)棱與底面垂直,AA1=AB=AC=2,BC=2 ,M,N分別是CC1 , BC的中點,點P在直線A1B1上,且

(1)證明:無論λ取何值,總有AM⊥PN;
(2)當λ取何值時,直線PN與平面ABC所成的角θ最大?并求該角取最大值時的正切值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=loga(ax2﹣x+1),其中a>0且a≠1.
(1)當a= 時,求函數(shù)f(x)的值域;
(2)當f(x)在區(qū)間 上為增函數(shù)時,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知f(x)=﹣3x2+a(6﹣a)x+6.
(Ⅰ)解關于a的不等式f(1)>0;
(Ⅱ)若不等式f(x)>b的解集為(﹣1,3),求實數(shù)a,b的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) ,常數(shù)a>0.
(1)設mn>0,證明:函數(shù)f(x)在[m,n]上單調(diào)遞增;
(2)設0<m<n且f(x)的定義域和值域都是[m,n],求常數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知一家公司生產(chǎn)某種品牌服裝的年固定成本為10萬元,每生產(chǎn)1千件需另投入2.7萬元.設該公司一年內(nèi)生產(chǎn)該品牌服裝x千件并全部銷售完,每千件的銷售收入為R(x)萬元,且R(x)=
(1)求年利潤W(萬元)關于年產(chǎn)量x(千件)的函數(shù)解析式;
(2)當年產(chǎn)量為多少千件時,該公司在這一品牌服裝的生產(chǎn)中所獲得的年利潤最大,并求出最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,直三棱柱ABC﹣A1B1C1中,側(cè)棱AA1⊥平面ABC.若AB=AC=AA1=1,BC= ,則異面直線A1C與B1C1所成的角為 . .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=
(1)作出函數(shù)f(x)的圖象;
(2)直接寫出函數(shù)f(x)的值域;
(3)求 f[f(﹣1)]的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在四面體S﹣ABC中, ,二面角S﹣AC﹣B的余弦值為- ,則該四面體外接球的表面積是(
A.
B.
C.24π
D.6π

查看答案和解析>>

同步練習冊答案