如圖,在正三棱柱ABC-A1B1C1中,AB=AA1,D是CC1的中點(diǎn),F(xiàn)是A1B的中點(diǎn),
(1)求證:DF平面ABC;
(2)求證:AF⊥平面BDF.
證明:(1)取AB的中點(diǎn)E,連接EF,CE,
因?yàn)镕是A1B的中點(diǎn),所以EF是△A1AB的中位線,
所以EF=
1
2
AA1
,且EFAA1
又因?yàn)镈是CC1的中點(diǎn),所以EFCD,且EF=CD,
所以四邊形CDFE是平行四邊形,所以DFCE,
又CE?平面ABC,DF?平面ABC
所以DF平面ABC
(2)因?yàn)锳B=AA1且F是A1B的中點(diǎn),所以AF⊥A1B,
又因?yàn)镃E⊥平面A1AB,且DFCE,
所以DF⊥平面A1AB,
∵AF?平面A1AB,
所以AF⊥DF,又A1B∩DF=F,
所以AF⊥平面BDF.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如果兩個平面分別平行于第三個平面,那么這兩個平面的位置關(guān)系( 。
A.平行B.相交C.異面D.以上都不對

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,在長方體ABCD-A1B1C1D1中,AB=1,BC=2,CC1=5,M為棱CC1上一點(diǎn).
(1)若C1M=
3
2
,求異面直線A1M和C1D1所成角的正切值;
(2)是否存在這樣的點(diǎn)M使得BM⊥平面A1B1M?若存在,求出C1M的長;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在底面為菱形的四棱錐P-ABCD中,∠ABC=60°,PA=AC=a,PB=PD=
2
a,點(diǎn)E在PD上,且PE:ED=2:1.
(1)求證:PA⊥平面ABCD;
(2)求面EAC與面DAC所成的二面角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,三棱錐P-ABC中,PA=AB,PC=BC,E、F、G分別為PA、AB、PB的中點(diǎn),
(1)求證:EF平面PBC;
(2)求證:EF⊥平面ACG.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,平面EAD⊥平面ABCD,△ADE是等邊三角形,ABCD是矩形,F(xiàn)是AB的中點(diǎn),G是AD的中點(diǎn),EC與平面ABCD成30°角.
(1)求證:EG⊥平面ABCD;
(2)若AD=2,求二面角E-FC-G的度數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知:如圖,在正方體ABCD-A1B1C1D1中,E是CC1的中點(diǎn),F(xiàn)是AC,BD的交點(diǎn).
求證:A1F⊥平面BED.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)α、β為兩個不同的平面,直線l?α,則“l(fā)⊥β”是“α⊥β”成立的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在四棱錐P-ABCD中,底面ABCD中為菱形,∠BAD=60°,Q為AD的中點(diǎn).
(1)若PA=PD,求證:平面PQB⊥平面PAD;
(2)點(diǎn)M在線段PC上,PM=tPC,試確定實(shí)數(shù)t的值,使得PA平面MQB.

查看答案和解析>>

同步練習(xí)冊答案