已知D為△ABC的邊BC上一點(diǎn),且AB:BC:CA=1:
3
:1.
(1)求角A的大。
(2)若△ABC的面積為
3
,且∠ADC=45°,求BD的長(zhǎng).
分析:設(shè)三邊之比為k,表示出三邊長(zhǎng),
(1)利用余弦定理表示出cosA,將三邊長(zhǎng)代入求出cosA的值,由A為三角形的內(nèi)角,利用特殊角的三角函數(shù)值即可求出A的度數(shù);
(2)利用三角形的面積公式列出關(guān)系式,將已知面積與sinA的值代入求出AB的值,在三角形ABD中,利用正弦定理即可求出BD的長(zhǎng).
解答:解:設(shè)AB:BC:CA=1:
3
:1=k,則AB=AC=k,BC=
3
k,
(1)由余弦定理得:cosA=
AB2+CA2-BC2
2AB•CA
=
k2+k2-(
3
k)
2
2k2
=-
1
2
,
∵A為三角形的內(nèi)角,∴A=120°;
(2)∵AB=CA,∠A=120°,
∴∠B=∠C=30°,
∴∠BAD=15°,
∵S△ABC=
1
2
AB•AC•sin120°=
3

∴AB=AC=2,
∵sin15°=sin(45°-30°)=sin45°cos30°-cos45°sin30°=
6
-
2
4
,
則由正弦定理
AB
sin(180°-45°)
=
BD
sin15°
得:BD=
2sin15
sin135°
=
3
-1.
點(diǎn)評(píng):此題考查了正弦、余弦定理,三角形的面積公式,以及特殊角的三角函數(shù)值,熟練掌握定理是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知D為△ABC的邊AC的中點(diǎn),若
BD
BC
=
BA
BD
,則△ABC的形狀必為( 。
A、等邊三角形
B、直角三角形
C、等腰三角形
D、等腰直角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知D為△ABC的邊BC的中點(diǎn),在△ABC所在平面內(nèi)有一點(diǎn)P,滿(mǎn)足
PA
+
BP
+
CP
=0,設(shè)
|
PA
|
|
PD
|
=λ,則λ的值為( 。
A、1
B、
1
2
C、2
D、
1
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知D為△ABC的邊BC的中點(diǎn),△ABC所在平面內(nèi)有一點(diǎn)P,滿(mǎn)足
PA
+
BP
+
CP
=0,設(shè)
|
AP|
|
PD|
=λ,則λ的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年四川省成都市雙流縣棠湖中學(xué)外語(yǔ)實(shí)驗(yàn)學(xué)校高一(下)5月月考數(shù)學(xué)試卷(解析版) 題型:解答題

已知D為△ABC的邊BC上一點(diǎn),且AB:BC:CA=1::1.
(1)求角A的大;
(2)若△ABC的面積為,且∠ADC=45°,求BD的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案