如圖所示,在直四棱柱ABCD-A1B1C1D1中,DB=BC,DB⊥AC,點M是棱BB1上一點.
(1)求證:B1D1∥面A1BD;
(2)求證:MD⊥AC;
(3)試確定點M的位置,使得平面DMC1⊥平面CC1D1D.
【答案】分析:(1)在平面A1BD內(nèi)找到和B1D1平行的直線BD即可.利用線線平行來推線面平行.
(2)先利用條件BB1⊥AC和BD⊥AC證得AC⊥面BB1D,再證明MD⊥AC即可.
(3)因為棱BB1上最特殊的點是中點,所以先看中點.取DC的中點N,D1C1的中點N1,連接NN1交DC1于O,⇒BN⊥DC⇒面ABCD⊥面DCC1D1,
⇒BN⊥面DCC1D1.而又可證得BN∥OM,所以可得OM⊥平面CC1D1D⇒平面DMC1⊥平面CC1D1D.
解答:解:(1)證明:由直四棱柱,得BB1∥DD1且BB1=DD1,所以BB1D1D是平行四邊形,
所以B1D1∥BD.
而BD?平面A1BD,B1D1?平面A1BD,
所以B1D1∥平面A1BD.
(2)證明:因為BB1⊥面ABCD,AC?面ABCD,所以BB1⊥AC,
又因為BD⊥AC,且BD∩BB1=B,
所以AC⊥面BB1D,
而MD?面BB1D,所以MD⊥AC.
(3)當(dāng)點M為棱BB1的中點時,平面DMC1⊥平面CC1D1D
取DC的中點N,D1C1的中點N1,連接NN1交DC1于O,連接OM.
因為N是DC中點,BD=BC,所以BN⊥DC;又因為DC是面ABCD與面DCC1D1的交線,而面ABCD⊥面DCC1D1,
所以BN⊥面DCC1D1
又可證得,O是NN1的中點,所以BM∥ON且BM=ON,即BMON是平行四邊形,所以BN∥OM,所以O(shè)M⊥平面CC1D1D,因為OM?面DMC1,所以平面DMC1⊥平面CC1D1D.
點評:本題考查平面和平面垂直的判定和性質(zhì).在證明面面垂直時,其常用方法是在其中一個平面內(nèi)找兩條相交直線和另一平面內(nèi)的某一條直線垂直.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

19、如圖所示,在直四棱柱ABCD-A1B1C1D1中,DB=BC,DB⊥AC,點M是棱BB1上一點.
(1)求證:B1D1∥面A1BD;
(2)求證:MD⊥AC;
(3)試確定點M的位置,使得平面DMC1⊥平面CC1D1D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

18、如圖所示,在直四棱柱ABCD-A1B1C1D1中,DB⊥AC,點M是棱BB1上一點.
(1)求證:B1D1∥面A1BD;
(2)求證:MD⊥AC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

16、如圖所示,在直四棱柱M中,DB=BC,MN,點EN是棱MN上一點.
(1)求證B1D1∥面A1BD;
(2)求證:MD⊥AC;
(3)試確定點M的位置,使得平面DMC1⊥平面CC1D1D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:同步題 題型:解答題

如圖所示,在直四棱柱ABCD-A1B1C1D1中,DB=BC,DB⊥AC,點M是棱BB1上一點.
(1)求證:B1D1∥面A1BD;
(2)求證:MD⊥AC;
(3)試確定點M的位置,使得平面DMC1⊥平面CC1D1D。

查看答案和解析>>

同步練習(xí)冊答案