若(3x-1)7=a7x7+a6x6+…+a1x+a0,則|a0|+|a1|+|a2|+…+|a7|=
 
考點:二項式系數(shù)的性質(zhì)
專題:計算題,二項式定理
分析:由題意,|a0|+|a1|+|a2|+…+|a7|為(3x+1)7的各項系數(shù)之和,給x賦值,使得x=1,代入x=1以后,寫出各項系數(shù)之和.
解答: 解:由題意,|a0|+|a1|+|a2|+…+|a7|為(3x+1)7的各項系數(shù)之和.
取x=1代入上面的等式則有|a0|+|a1|+|a2|+…+|a7|=(3+1)7 =47
故答案為:47
點評:本題考查二項式定理的應用,本題解題的關鍵是給變量賦值,從賦值以后的結果上,變化出要求的各個系數(shù)之和.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

如圖,已知PA垂直于矩形ABCD所在的平面,M,N分別是AB,PC的中點,若∠PDA=45°,
(1)求證:MN∥平面PAD且MN⊥平面PCD.
(2)探究矩形ABCD滿足什么條件時,有PC⊥BD.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

直線l1、l2的方向向量分別為
a
=(1,2,-2),
b
=(-2,3,2),則(  )
A、l1∥l2
B、l1與l2相交,但不垂直
C、l1⊥l2
D、不能確定

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知正方體ABCD-A1B1C1D1的棱長為a,則
A1B
B1C
=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
sinπx
πx+π1-x
(x∈R).下列命題:
①函數(shù)f(x)既有最大值又有最小值;
②函數(shù)f(x)的圖象是軸對稱圖形;
③函數(shù)f(x)在區(qū)間[-π,π]上共有7個零點;
④函數(shù)f(x)在區(qū)間(0,1)上單調(diào)遞增.
其中真命題是
 
.(填寫出所有真命題的序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=
-1
2
+
sin
5x
2
2sin
x
2
,x∈(0,π)
(1)將f(x)表示成cosx的多項式
(2)求f(x)的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設不等式組
x+2y-4≤0
x≥0
y≥0
表示平面區(qū)域為D,在區(qū)域D內(nèi)隨機取一點P,則點P落在圓x2+y2=1內(nèi)的概率為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

“q≤1”是“函數(shù)f(x)=x2-x+q存在零點”的( 。
A、充分而不必要條件
B、必要而不充分條件
C、充要條件
D、既不充分又不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

x-1
x
>0”是“x>l”的( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

同步練習冊答案