已知橢圓的右焦點為F2(1,0),點 在橢圓上.
(1)求橢圓方程;
(2)點在圓上,M在第一象限,過M作圓的切線交橢圓于P、Q兩點,問|F2P|+|F2Q|+|PQ|是否為定值?如果是,求出定值,如不是,說明理由.
科目:高中數(shù)學 來源: 題型:解答題
設橢圓M:=1(a>)的右焦點為F1,直線l:x=與x軸交于點A,若1=2 (其中O為坐標原點).
(1)求橢圓M的方程;
(2)設P是橢圓M上的任意一點,EF為圓N:x2+(y-2)2=1的任意一條直徑(E,F為直徑的兩個端點),求·的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓的離心率為,且經(jīng)過點. 過它的兩個焦點,分別作直線與,交橢圓于A、B兩點,交橢圓于C、D兩點,且.
(1)求橢圓的標準方程;
(2)求四邊形的面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓C:=1(a>b>0)的離心率與等軸雙曲線的離心率互為倒數(shù)關系,直線l:x-y+=0與以原點為圓心, 以橢圓C的短半軸長為半徑的圓相切.
(1)求橢圓C的方程;
(2)設M是橢圓的上頂點,過點M分別作直線MA,MB交橢圓于A,B兩點,設兩直線的斜率分別為k1,k2,且k1+k2=4,證明:直線AB過定點.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知△的兩個頂點的坐標分別是,,且所在直線的斜率之積等于.
(1)求頂點的軌跡的方程,并判斷軌跡為何種圓錐曲線;
(2)當時,過點的直線交曲線于兩點,設點關于軸的對稱點為(不重合), 試問:直線與軸的交點是否是定點?若是,求出定點,若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
設橢圓的方程為 ,斜率為1的直線不經(jīng)過原點,而且與橢圓相交于兩點,為線段的中點.
(1)問:直線與能否垂直?若能,求之間滿足的關系式;若不能,說明理由;
(2)已知為的中點,且點在橢圓上.若,求之間滿足的關系式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com