已知函數(shù).
(1)求函數(shù)的定義域;
(2)若函數(shù)在上單調(diào)遞增,求的取值范圍.
(1)若即時,;
若即時,;
若即時,.
(2).
解析試題分析:(1)對數(shù)函數(shù)要有意義,必須真數(shù)大于0,即,這是一個含有參數(shù)的不等式,故對m分情況進行討論;(2)根據(jù)復(fù)合函數(shù)單調(diào)性的判斷法則,因為是增函數(shù),要使得若函數(shù)在上單調(diào)遞增,則函數(shù)在上單調(diào)遞增且恒正,據(jù)些找到m滿足的不等式,解不等式即得m的范圍.
試題解析:(1)由得:
若即時,
若即時,
若即時,
(2)若函數(shù)在上單調(diào)遞增,則函數(shù)在上單調(diào)遞增且恒正。
所以 解得:
考點:1、函數(shù)的定義域及單調(diào)性;2、不等關(guān)系.
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)f(x)=|2x-1|+|2x-3|,x∈R
(Ⅰ)解不等式f(x)≤5;
(Ⅱ)若的定義域為R,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
(1)用定義證明在上單調(diào)遞增;
(2)若是上的奇函數(shù),求的值;
(3)若的值域為D,且,求的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
定義在上的函數(shù),如果對任意,恒有(,)成立,則稱為階縮放函數(shù).
(1)已知函數(shù)為二階縮放函數(shù),且當(dāng)時,,求的值;
(2)已知函數(shù)為二階縮放函數(shù),且當(dāng)時,,求證:函數(shù)在上無零點;
(3)已知函數(shù)為階縮放函數(shù),且當(dāng)時,的取值范圍是,求在()上的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
函數(shù)的定義域為(a為實數(shù)),
(1)當(dāng)時,求函數(shù)的值域。
(2)若函數(shù)在定義域上是減函數(shù),求a的取值范圍
(3)求函數(shù)在上的最大值及最小值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(12分)定義運算 若函數(shù).
(1)求的解析式;
(2)畫出的圖像,并指出單調(diào)區(qū)間、值域以及奇偶性.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com