已知f(x)為偶函數(shù),且f (2+x)=f (2-x),當(dāng)-2≤x≤0時(shí),f(x)=2x,an=f (n),n∈N*,則a2010的值為( )
A.2010
B.4
C.
D.-4
【答案】分析:由f(x)為偶函數(shù),且f (2+x)=f (2-x),推出f(x)是周期為4的周期函數(shù),
由an=f (n)得,a2010=f (2010)=f (4×502+2)=f (2)=f (-2).
解答:解:∵f (2+x)=f (2-x),∴f (x)=f (4-x),又f(x)為偶函數(shù),∴f (-x)=f (x),
∴f (-x)=f (4-x),∴f (x)=f (x+4),∴f(x)是周期等于4的周期函數(shù),
∵an=f (n),當(dāng)-2≤x≤0時(shí),f(x)=2x,
∴a2010=f (2010)=f (4×502+2)=f (2)=f (-2)=2-2=,
故答案為  
點(diǎn)評(píng):本題考查偶函數(shù)的性質(zhì)、函數(shù)的周期性,利用函數(shù)的奇偶性和周期性求函數(shù)值.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)為偶函數(shù),且x>0時(shí),f(x)=
1
a
-
1
x
(a>0)

(1)判斷函數(shù)f(x)在(0,∞)上的單調(diào)性,并證明;
(2)若f(x)在[
1
2
,2]
上的值域是[
1
2
,2]
,求a的值;
(3)求x∈(-∞,0)時(shí)函數(shù)f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)為偶函數(shù),它在零到正無(wú)窮上是增函數(shù),求f(2m-3)<f(8)的m范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)為偶函數(shù),且f(1+x)=f(3-x),當(dāng)-2≤x≤0時(shí),f(x)=3x,則f(2011)=
1
3
1
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)為偶函數(shù),當(dāng)x≥0時(shí),f(x)=-(x-1)2+1,滿足f[f(a)]=
1
2
的實(shí)數(shù)a的個(gè)數(shù)為( 。
A、2B、4C、6D、8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)為偶函數(shù),x≥0 時(shí),f(x)=x3-8,則f(x-2)>0的解集為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案