已知函數(shù)

(1)函數(shù)f(x)的單調(diào)區(qū)間;

(2)設(shè)函數(shù)g(x)=xf(x)+t(x)+ex(t∈R),是否存在實數(shù)a,b,c∈[0,1],使得g(a)+g(b)<g(c)?若存在,求出t的取值范圍;若不存在,說明理由.

答案:
解析:

  解:(1)  2分

  當(dāng)時,,在區(qū)間上為減函數(shù)

  當(dāng)時,,在區(qū)間上為增函數(shù)  4分

  (2)假設(shè)存在、,使得

  則  5分

  ∵

  ∴  7分

 、佼(dāng)時,上單調(diào)遞減

  ∴,得  9分

 、诋(dāng)時,,上單調(diào)遞增

  ∴,得  11分

 、郛(dāng)時,

  在,上單調(diào)遞減

  在,上單調(diào)遞增

  ∴

  即(★)  13分

  由(1)知上單調(diào)遞減

  故

  而

  ∴不等式(★)無解  16分

  綜上所述,存在,使得命題成立.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)的導(dǎo)函數(shù)為f′(x)=2+cosx,x∈(-1,1),且f(0)=0,如果f(1-x)+f(1-x2)<0,則實數(shù)x的取值范圍為(  )
A、(0,1)
B、(1 , 
2
)
C、(-2 , -
2
)
D、(1,
2
)∪
(-
2
 , -1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=f(x)是定義在R上的周期函數(shù),周期為5,函數(shù)y=f(x)(-1≤x≤1)是奇函數(shù),又知y=f(x)在[0,1]上是一次函數(shù),在[1,4]上是二次函數(shù),且在x=2時函數(shù)取得最小值-5,
(1)求f(1)+f(4)的值;
(2)求y=f(x),x∈[1,4]上的解析式;
(3)求y=f(x)在[4,9]上的解析式,并求函數(shù)y=f(x)的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)的定義域為[-2,+∞),部分對應(yīng)值如表格所示,f′(x)為f(x).的導(dǎo)函數(shù),函數(shù)y=f′(x)的圖象如右圖所示:
x -2 0 4
f(x) 1 -1 1
若兩正數(shù)a,b滿足f(a+2b)<1,則
b-4
a+4
的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
a
3
x3-
1
2
(a+1)x2+x-
1
3
(a∈R).
(1)函數(shù)f(x)的圖象在點(-1,f(-1))處的切線方程為12x-y+b=0(b∈R),求a與b的值;
(2)若a<0,求函數(shù)f(x)的極值;
(3)是否存在實數(shù)a使得函數(shù)f(x)在區(qū)間[0,2]上有兩個零點?若存在,求出a的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(x)=數(shù)學(xué)公式,x∈(0,+∞).
(1)作出函數(shù)y=f(x)的大致圖象并根據(jù)圖象寫出函數(shù)f(x)的單調(diào)區(qū)間;
(2)證明:當(dāng)0<a<b且f(a)=f(b)時,ab>1;
(3)若存在實數(shù)a,b(0<a<b),使得函數(shù)y=f(x)在x∈[a,b]上的函數(shù)的值域為[ma,mb](m≠0),求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案