(本題15分)如圖,AC 是圓 O 的直徑,點(diǎn) B 在圓 O 上,∠BAC=30°,BM⊥AC交 AC 于點(diǎn) M,EA⊥平面ABC,F(xiàn)C//EA,AC=4,EA=3,F(xiàn)C=1.
(I)證明:EM⊥BF;
(II)求平面 BEF 與平面ABC 所成銳二面角的余弦值.
(1)見解析;(2).
【解析】
試題分析:(1)本小題易建立空間直角坐標(biāo)系,易于用向量法求解,建系后可求出點(diǎn)E,M,B,F(xiàn)的坐標(biāo),然后利用證明即可.
(2)由于EA垂直平面ABC,所以可做為平面ABC的法向量,然后再求出平面BEF的法向量
設(shè)二面角為求解即可.
(1).
如圖,以為坐標(biāo)原點(diǎn),垂直于、、所在的直線為軸建立空間直角坐標(biāo)系.由已知條件得,
.
由,
得, . ……………6分
(2)由(1)知.
設(shè)平面的法向量為,
由 得,]
令得,,
由已知平面,所以取面的法向量為,
設(shè)平面與平面所成的銳二面角為,
則,
平面與平面所成的銳二面角的余弦值為..
考點(diǎn):利用空間向量法證明異面直線垂直,求二面角.
點(diǎn)評:利用空間向量法證明兩直線垂直,就是證明兩直線的方向向量的數(shù)量積為零即可.
在利用向量法求二面角時(shí),要先求(或找)出兩個面的法向量,然后求法向量的夾角即可.
還要注意法向量的夾角可能與二面角相等也可能互補(bǔ),要注意從圖形上觀察.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
(本題15分)如圖,橢圓長軸端點(diǎn)為,為橢圓中心,為橢圓的右焦點(diǎn),且,.(1)求橢圓的標(biāo)準(zhǔn)方程;(2)記橢圓的上頂點(diǎn)為,直線交橢圓于兩點(diǎn),問:是否存在直線,使點(diǎn)恰為的垂心?若存在,求出直線的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本題滿分15分) 如圖,某小區(qū)準(zhǔn)備綠化一塊直徑為的半圓形空地,外的地方種草,的內(nèi)接正方形為一水池,其余地方種花.若 ,設(shè)的面積為,正方形的面積為,將比值稱為“規(guī)劃合理度”.
(1)試用表示和.(2)當(dāng)變化時(shí),求“規(guī)劃合理度”取得最小值時(shí)的角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年浙江省高三回頭考聯(lián)考理科數(shù)學(xué)試卷(解析版) 題型:解答題
(本題15分)如圖,在四棱錐中,底面,, ,, ,是的中點(diǎn)。
(Ⅰ)證明:;
(Ⅱ)證明:平面;
(Ⅲ)求二面角的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本題15分)
如圖,直角三角形的頂點(diǎn)坐標(biāo),直角頂點(diǎn),頂點(diǎn)在軸上,點(diǎn)為線段的中點(diǎn).
(1)求邊所在直線方程;
(2)為直角三角形外接圓的圓心,求圓的方程;
(3)直線過點(diǎn)且傾斜角為,求該直線被圓截得的弦長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本題15分)
如圖,直角三角形的頂點(diǎn)坐標(biāo),直角頂點(diǎn),頂點(diǎn)在軸上,點(diǎn)為線段的中點(diǎn).
(1)求邊所在直線方程;
(2)為直角三角形外接圓的圓心,求圓的方程;
(3)直線過點(diǎn)且傾斜角為,求該直線被圓截得的弦長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com