已知函數(shù),g(x)=x2
(1)若,時,直線l與函數(shù)f(x)和函數(shù)g(x)的圖象相切于同一點,求切線l的方程
(2)若f(x)在[2,4]內(nèi)為單調(diào)函數(shù),求實數(shù)a的取值范圍.
【答案】分析:(1)由f(x)求出其導函數(shù),把切點的橫坐標代入導函數(shù)中即可表示出切線的斜率,兩次求出的斜率相等列出關(guān)于切點的橫坐標x的方程,求出切點的坐標,根據(jù)得出的切點坐標,同時由f(x)求出其導函數(shù),把切點的橫坐標代入導函數(shù)中即可表示出切線的斜率,根據(jù)切點坐標和切線過原點寫出切線方程即可.
(2)通過解f′(x),求其單調(diào)區(qū)間,轉(zhuǎn)化為恒成立問題求a的取值范圍.
解答:解:(1)當a=時,由題意可得,f′(x)=(1-)+=,g′(x)=2x,
又直線L與函數(shù)f(x),g(x)的圖象相切于同一點,
=2x,(4分)
解得x=1,x=,(x=-1舍去),
此時,f(1)=g(1)=1,而f()=+≠g()=,切線的斜率k=2
∴切點為(1,1),則切線L的方程為:y=2x-1.(6分)
(2)∵f′(x)=a(1-)+=,
要使f(x)在[2,4]為單調(diào)增函數(shù),須f′(x)≥0在[2,4]恒成立,
≥0在[2,4]恒成立,即ax2+2x-a≥0在[2,4]恒成立,
a(x2-1)≥-2x,即a≥=(2≤x≤4),(8分)
設(shè)u(x)=-x(2≤x≤4),因為u′(x)=--1<0,所以u(x)在[2,4]上單調(diào)遞減.
=≥-,
所以當a≥時,f(x)在[2,4]為單調(diào)增函數(shù);(10分)
同理要使f(x)為單調(diào)減函數(shù),須f′(x)≤0在[2,4]恒成立,易得a≤-,
綜上,若f(x)在[2,4]為單調(diào)函數(shù),則a的取值范圍是(-∞,-]或[,+∞).(12分)
點評:對于已知函數(shù)單調(diào)性,求參數(shù)范圍問題的常見解法;設(shè)函數(shù)f(x)在(a,b)上可導,若f(x)在(a,b)上是增函數(shù),則可得f′(x)≥0,從而建立了關(guān)于待求參數(shù)的不等式,同理,若f(x)在(a,b)上是減函數(shù),,則可得f′(x)≤0.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)y=g(x)與f(x)=loga(x+1)(a>1)的圖象關(guān)于原點對稱.
(1)寫出y=g(x)的解析式;
(2)若函數(shù)F(x)=f(x)+g(x)+m為奇函數(shù),試確定實數(shù)m的值;
(3)當x∈[0,1)時,總有f(x)+g(x)≥n成立,求實數(shù)n的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)y=G(x)的圖象過原點,其導函數(shù)為y=f(x),函數(shù)f(x)=3x2+2bx+c且滿足f(1-x)=f(1+x).
(1)若f(x)≥0,對x∈[0,3]恒成立,求實數(shù)c的最小值.(2)設(shè)G(x)在x=t處取得極大值,記此極大值為g(t),求g(t)的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)y=g(x)的圖象與函數(shù)f(x)=(x-1)2(x≤0)的圖象關(guān)于直線y=x對稱,則函數(shù)g(x)的解析式為g(x)=
-
x
+1
(x≥1)
-
x
+1
(x≥1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)y=g(x)是定義在R上的奇函數(shù),當x>0時,g(x)=log2x,函數(shù)f(x)=4-x2,則函數(shù)f(x)•g(x)的大致圖象為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1)已知f(x)+2f(
1x
)=3x,求f(x)的解析式;
(2)已知函數(shù)y=g(x)定義域是[-2,3],求y=g(x+1)的定義域.

查看答案和解析>>

同步練習冊答案