【題目】 如圖,在三棱錐A-BCD中,CA=CB,DA=DB.作BE⊥CD,E為垂足,作AH⊥BE于H.求證:AH⊥平面BCD.
【答案】詳見(jiàn)解析
【解析】
試題證明線面垂直,可利用線面垂直的判定定理,證明直線與平面內(nèi)的兩條相交直線垂直,進(jìn)而說(shuō)明線面垂直.本題利用兩個(gè)等腰三角形三線合一,取AB的中點(diǎn)F,連接DF、CF,得出線面垂直,從而證明AB與CD垂直,又利用CD與BE垂直,從而得出線CD與面ABE垂直,得出CD與AH垂直,又AH與BE垂直,于是證明出線面垂直.
試題解析:
取AB的中點(diǎn)F,連接CF、DF.
∵CA=CB,DA=DB,∴CF⊥AB,DF⊥AB.
∵CF∩DF=F,∴AB⊥平面CDF.
∵CD平面CDF,∴AB⊥CD.
又CD⊥BE,AB∩BE=B,∴CD⊥平面ABE.
∵AH平面ABE,∴CD⊥AH.
∵AH⊥BE,BE∩CD=E,∴AH⊥平面BCD.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù),函數(shù),,其中為常數(shù),且,令函數(shù)為函數(shù)和的積函數(shù).
(1)求函數(shù)的表達(dá)式,并求其定義域;
(2)當(dāng)時(shí),求函數(shù)的值域
(3)是否存在自然數(shù),使得函數(shù)的值域恰好為?若存在,試寫(xiě)出所有滿(mǎn)足條件的自然數(shù)所構(gòu)成的集合;若不存在,試說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市A,B兩校組織了一次英語(yǔ)筆試(總分120分)聯(lián)賽,兩校各自挑選了英語(yǔ)筆試成績(jī)最好的100名學(xué)生參賽,成績(jī)不低于115分定義為優(yōu)秀.賽后統(tǒng)計(jì)了所有參賽學(xué)生的成績(jī)(都在區(qū)間內(nèi)),將這些數(shù)據(jù)分成4組:得到如下兩個(gè)頻率分布直方圖:
(1)分別計(jì)算A,B兩校聯(lián)賽中的優(yōu)秀率;
(2)聯(lián)賽結(jié)束后兩校將根據(jù)學(xué)生的成績(jī)發(fā)放獎(jiǎng)學(xué)金,已知獎(jiǎng)學(xué)金y(單位:百元)與其成績(jī)t的關(guān)系式為
①當(dāng)時(shí),試問(wèn)A,B兩校哪所學(xué)校的獲獎(jiǎng)人數(shù)更多?
②當(dāng)時(shí),若以獎(jiǎng)學(xué)金的總額為判斷依據(jù),試問(wèn)本次聯(lián)賽A,B兩校哪所學(xué)校實(shí)力更強(qiáng)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某城市為了解游客人數(shù)的變化規(guī)律,提高旅游服務(wù)質(zhì)量,收集并整理了2016年1月至2018年12月期間月接待游客量(單位:萬(wàn)人)的數(shù)據(jù),繪制了下面的折線圖,根據(jù)該折線圖,下列結(jié)論錯(cuò)誤的是( )
A.各年的月接待游客量高峰期大致在7,8月份
B.年接待游客量逐年增加
C.月接待游客量逐月增加
D.各年1月至6月的月接待游客量相對(duì)7月至12月,波動(dòng)性更小,變化比較平穩(wěn)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線l1:2x﹣y+2=0與l2:x+y+4=0.
(1)若一條光線從l1與l2的交點(diǎn)射出,與x軸交于點(diǎn)P(3,0),且經(jīng)x軸反射,求反射光線所在直線的方程;
(2)若直線l經(jīng)過(guò)點(diǎn)P(3,0),且它夾在直線l1與l2之間的線段恰被點(diǎn)P平分,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓:過(guò)點(diǎn),且橢圓的離心率為.
(Ⅰ)求橢圓的方程;
(Ⅱ)斜率為的直線交橢圓于,兩點(diǎn),且.若直線上存在點(diǎn)P,使得是以為頂角的等腰直角三角形,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù),.
(1)判斷函數(shù):在的單調(diào)性;
(2)對(duì)于區(qū)間上的任意不相等實(shí)數(shù)、,都有成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)滿(mǎn)足,且.
求的解析式;
設(shè),若存在實(shí)數(shù)a、b使得,求a的取值范圍;
若對(duì)任意,都有恒成立,求實(shí)數(shù)t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn)、分別為雙曲線的左、右焦點(diǎn),雙曲線的離心率為,點(diǎn)在雙曲線上,不在軸上的動(dòng)點(diǎn)與動(dòng)點(diǎn)關(guān)于原點(diǎn)對(duì)稱(chēng),且四邊形的周長(zhǎng)為.
(1)求動(dòng)點(diǎn)的軌跡的方程;
(2)過(guò)點(diǎn)的直線交的軌跡于,兩點(diǎn),為上一點(diǎn),且滿(mǎn)足,其中,求的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com