設(shè)橢圓,直線l過橢圓左焦點F1且不與x軸重合,l與橢圓交于P、Q,左準(zhǔn)線與x軸交于K,|KF1|=2.當(dāng)l與x軸垂直時,

(1)求橢圓T的方程;

(2)直線l繞著F1旋轉(zhuǎn),與圓O:x2+y2=5交于A,B兩點,若|AB|∈[4,],求△F2PQ的面積S的取值范圍(F2為橢圓的右焦點).

答案:
解析:

  解(1)設(shè)橢圓半焦距為c,,將代入橢圓方程得

  所以

  所求橢圓方程為: 4分

  (3)設(shè)直線,圓心O到l的距離

  由圓性質(zhì):,又,得 6分

  聯(lián)立方程組,消去x得

  設(shè)

  

 9分

  設(shè),

  上為增函數(shù), 11分

  所以, 12分


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)設(shè)橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左.右焦點分別為F1F2,上頂點為A,過點A與AF2垂直的直線交x軸負(fù)半軸于點Q,且2
F1F2
+
F2Q
=
0

(1)若過A.Q.F2三點的圓恰好與直線l:x-
3
y-3=0相切,求橢圓C的方程;
(2)在(1)的條件下,過右焦點F2作斜率為k的直線l與橢圓C交于M.N兩點.試證明:
1
|F2M|
+
1
|F2N|
為定值;②在x軸上是否存在點P(m,0)使得以PM,PN為鄰邊的平行四邊形是菱形,如果存在,求出m的取值范圍,如果不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•重慶)如圖,設(shè)橢圓的中心為原點O,長軸在x軸上,上頂點為A,左右焦點分別為F1,F(xiàn)2,線段OF1,OF2的中點分別為B1,B2,且△AB1B2是面積為4的直角三角形.
(Ⅰ)求該橢圓的離心率和標(biāo)準(zhǔn)方程;
(Ⅱ)過B1做直線l交橢圓于P,Q兩點,使PB2⊥QB2,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:天津市天津一中2012屆高三4月月考數(shù)學(xué)文科試題 題型:044

設(shè)橢圓,直線l過橢圓左焦點F1且不與x軸重合,l與橢圓交于P、Q,兩點,當(dāng)l與x軸垂直時,,若點

|KF1|=2

(1)求橢圓T的方程;

(2)直線l繞著F1旋轉(zhuǎn),與圓O:x2+y2=5交于A,B兩點,若|AB|∈[4,],求△F2PQ的面積S的取值范圍(F2為橢圓的右焦點).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009-2010學(xué)年重慶市萬州二中高三(下)3月月考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

設(shè)橢圓,直線l過橢圓左焦點F1且不與x軸重合,l橢圓交于P、Q,左準(zhǔn)線與x軸交于K,|KF1|=2.當(dāng)l與x軸垂直時,
(1)求橢圓T的方程;
(2)直線l繞著F1旋轉(zhuǎn),與圓O:x2+y2=5交于A,B兩點,若,求△F2PQ的面積S的取值范圍(F2為橢圓的右焦點).

查看答案和解析>>

同步練習(xí)冊答案