【題目】已知函,其中.
(Ⅰ)若,求曲線在點(diǎn)(2,f(2))處的切線方程;
(Ⅱ)若在區(qū)間上,f(x)>0恒成立,求a的取值范圍.
【答案】(1) y=6x-9 ;(2) 0<a<5.
【解析】
(Ⅰ)當(dāng)時,代入函數(shù)的解析式求得和,進(jìn)而求得,即切線的斜率為,再利用直線的點(diǎn)斜式方程,即可求解;
(Ⅱ)求出時的值,分和兩種情況討論函數(shù)的增減性分別取得和,及和都大于,聯(lián)立分別求解的解集,取并集,即可得到的取值范圍.
(Ⅰ)解:當(dāng)a=1時,f(x)=,f(2)=3;, .
所以曲線y=f(x)在點(diǎn)(2,f(2))處的切線方程為y-3=6(x-2),即y=6x-9
(Ⅱ)解:.令,解得x=0或x=
以下分兩種情況討論:
若,當(dāng)x變化時,,的變化情況如下表:
X | 0 | ||
f’(x) | + | 0 | - |
f(x) | 極大值 |
當(dāng)等價于
解不等式組得-5<a<5.因此.
(2)若a>2,則.當(dāng)x變化時,,的變化情況如下表:
X | 0 | ||||
f’(x) | + | 0 | - | 0 | + |
f(x) | 極大值 | 極小值 |
當(dāng)時,f(x)>0等價于即
解不等式組得或.因此2<a<5
綜合(1)和(2),可知a的取值范圍為0<a<5.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題共l2分)
如圖,在直三棱柱ABC-A1B1C1中,∠BAC=90°,AB=AC=AA1=1,延長A1C1至點(diǎn)P,使C1P=A1C1,連接AP交棱CC1于D.
(Ⅰ)求證:PB1∥平面BDA1;
(Ⅱ)求二面角A-A1D-B的平面角的余弦值;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】高考復(fù)習(xí)經(jīng)過二輪“見多識廣”之后,為了研究考前“限時搶分”強(qiáng)化訓(xùn)練次數(shù)與答題正確率﹪的關(guān)系,對某校高三某班學(xué)生進(jìn)行了關(guān)注統(tǒng)計(jì),得到如下數(shù)據(jù):
1 | 2 | 3 | 4 | |
20 | 30 | 50 | 60 |
(1)求關(guān)于的線性回歸方程,并預(yù)測答題正確率是100﹪的強(qiáng)化訓(xùn)練次數(shù);
(2)若用表示統(tǒng)計(jì)數(shù)據(jù)的“強(qiáng)化均值”(精確到整數(shù)),若“強(qiáng)化均值”的標(biāo)準(zhǔn)差在區(qū)間內(nèi),則強(qiáng)化訓(xùn)練有效,請問這個班的強(qiáng)化訓(xùn)練是否有效?
附:回歸直線的斜率和截距的最小二乘法估計(jì)公式分別為:
,=- ,
樣本數(shù)據(jù)的標(biāo)準(zhǔn)差為:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某大學(xué)準(zhǔn)備在開學(xué)時舉行一次大學(xué)一年級學(xué)生座談會,擬邀請20名來自本校機(jī)械工程學(xué)院、海洋學(xué)院、醫(yī)學(xué)院、經(jīng)濟(jì)學(xué)院的學(xué)生參加,各學(xué)院邀請的學(xué)生數(shù)如下表所示:
學(xué)院 | 機(jī)械工程學(xué)院 | 海洋學(xué)院 | 醫(yī)學(xué)院 | 經(jīng)濟(jì)學(xué)院 |
人數(shù) | 4 | 6 | 4 | 6 |
(Ⅰ)從這20名學(xué)生中隨機(jī)選出3名學(xué)生發(fā)言,求這3名學(xué)生中任意兩個均不屬于同一學(xué)院的概率;
(Ⅱ)從這20名學(xué)生中隨機(jī)選出3名學(xué)生發(fā)言,設(shè)來自醫(yī)學(xué)院的學(xué)生數(shù)為ξ,求隨機(jī)變量ξ的概率分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,右焦點(diǎn)為。斜率為1的直線與橢圓交于兩點(diǎn),以為底邊作等腰三角形,頂點(diǎn)為。
(1)求橢圓的方程;
(2)求的面積。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C: =1(a>b>0)的短軸長為2,離心率e= .
(Ⅰ)求橢圓C的方程;
(Ⅱ)若直線l:y=kx+m與橢圓交于不同的兩點(diǎn)A,B,與圓x2+y2= 相切于點(diǎn)M.
(i)證明:OA⊥OB(O為坐標(biāo)原點(diǎn));
(ii)設(shè)λ= ,求實(shí)數(shù)λ的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)在R上存在導(dǎo)數(shù)f′(x),對任意的x∈R,有f(﹣x)+f(x)=x2 , 且x∈(0,+∞)時,f′(x)>x.若f(2﹣a)﹣f(a)≥2﹣2a,則實(shí)數(shù)a的取值范圍為( )
A.[1,+∞)
B.(﹣∞,1]
C.(﹣∞,2]
D.[2,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),曲線在點(diǎn)處的切線方程為.
(1)求,的值;
(2)若,求函數(shù)的單調(diào)區(qū)間;
(3)設(shè)函數(shù),且在區(qū)間內(nèi)為減函數(shù),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com