考點(diǎn):數(shù)列的求和,等比數(shù)列的性質(zhì)
專題:等差數(shù)列與等比數(shù)列
分析:(1)由于a
1=3,數(shù)列{S
n+1}是公比為4的等比數(shù)列.可得S
n+1=4×4
n-1,再利用當(dāng)n≥2時(shí),a
n=S
n-S
n-1即可得出.
(2)利用對(duì)數(shù)的運(yùn)算性質(zhì)可得b
n=lg
=2n-7,由b
n≤0,解得n即可得出.
解答:
解:(1)∵a
1=3,數(shù)列{S
n+1}是公比為4的等比數(shù)列.
∴S
n+1=4×4
n-1,
∴
Sn=4n-1.
當(dāng)n≥2時(shí),a
n=S
n-S
n-1=4
n-1-(4
n-1-1)=3×4
n-1.
當(dāng)n=1時(shí),上式也成立.
∴a
n=3•4
n-1.
(2)b
n=lg
=
lg=2n-7,
由b
n≤0,解得
n≤,
∴當(dāng)n=3時(shí),數(shù)列{b
n}的前n項(xiàng)和T
n取得最小值T
3=
=-9.
點(diǎn)評(píng):本題考查了等比數(shù)列的通項(xiàng)公式、數(shù)列通項(xiàng)公式與前n項(xiàng)和的關(guān)系、對(duì)數(shù)的運(yùn)算性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.