給出以下幾個命題:
①若a,b∈R,且ab>0,則|a+b|<|a|+|b|;
②若a>b>0,c<d<0,e<0,則
e
a-c
e
b-d
;
③若x,y,z∈R+,則
x
y
+
y
z
+
z
x
≥3

④設(shè)x∈R+,則y=2x2+
8
x
的最小值為8.
其中是真命題的序號是
②③
②③
分析:根據(jù)絕對值的性質(zhì),可判斷①的真假;根據(jù)不等式的基本性質(zhì),可得②的真假;根據(jù)均值定理,可得③及④的真假;進而得到答案.
解答:解:若若a,b∈R,且ab>0,則|a+b|=|a|+|b|,故①錯誤;
若a>b>0,c<d<0,a-c>b-d>0,
1
a-c
1
b-d
,又由e<0,則
e
a-c
e
b-d
,故②正確;
③若x,y,z∈R+,則
x
y
+
y
z
+
z
x
≥3
3
x
y
y
z
z
x
=3,故③正確;
設(shè)x∈R+,則y=2x2+
8
x
=2x2+
4
x
+
4
x
≥3
32x2
4
x
4
x
=6
34
,故④錯誤;
故答案為:②③
點評:本題考查的知識點是命題的真假判斷與應(yīng)用,熟練掌握基本不等式,絕對值的性質(zhì)及不等式的基本性質(zhì),是解答本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

給出以下幾個命題,正確的是
 

①函數(shù)f(x)=
x-1
2x+1
對稱中心是(-
1
2
,-
1
2
)
;
②已知Sn是等差數(shù)列{an},n∈N*的前n項和,若S7>S5,則S9>S3;
③函數(shù)f(x)=x|x|+px+q(x∈R)為奇函數(shù)的充要條件是q=0;
④已知a,b,m均是正數(shù),且a<b,則
a+m
b+m
a
b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出以下幾個命題:
①由曲線y=x2與直線y=2x圍成的封閉區(qū)域的面積為
4
3

②已知點A是定圓C上的一個定點,線段AB為圓的動弦,若
OP
=
1
2
(
OA
+
OB
)
,O為坐標(biāo)原點,則動點P的軌跡為圓;
③把5本不同的書分給4個人,每人至少1本,則不同的分法種數(shù)為A54•A41=480種;
④若直線l∥平面α,直線l⊥直線m,直線l?平面β,則β⊥α.
其中,正確的命題有
 
.(將所有正確命題的序號都填在橫線上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

我們把離心率為e=
5
+1
2
的雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)
稱為黃金曲線,O為坐標(biāo)原點,如圖所示,給出以下幾個命題:
①雙曲線x2-
2y2
5
+1
=1
是黃金曲線;
②若b2=ac,則該雙曲線是黃金曲線;
③若F1B1A2=900,則該雙曲線是黃金曲線;
④若∠MON=90°,則該雙曲線是黃金曲線;
其中正確的是
①②③④
①②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出以下幾個命題:
①已知函數(shù)f(x)=
x2+4x+2
 , x<-1 , 
  x≥-1 .
則f(x)=x有三個根;
②?x0∈R,x0≤sinx0
③過空間任一點,有且只有一個平面與兩異面直線同時平行;
④兩條直線l1:A1x+B1y+C1=0與直線l2:A2x+B2y+C2=0平行的充要條件是
A1B2=A2B1 
B1C2B2C1 

y=
log
1
2
(
1
x-1
)
的定義域是[2,+∞).
則正確的命題有
 
(填序號).

查看答案和解析>>

同步練習(xí)冊答案