【題目】如圖,等腰三角形PAD所在平面與菱形ABCD所在平面互相垂直,已知點(diǎn)E,F(xiàn),M,N分別為邊BA,BC,AD,AP的中點(diǎn).

(1)求證:AC⊥PE;

(2)求證:PF∥平面BNM.

【答案】(1)見(jiàn)解析; (2)見(jiàn)解析.

【解析】

(1)連結(jié)PM,ME,推導(dǎo)出ME∥BD,AC⊥ME,從而PM平面ABCD,進(jìn)而PMAC,由此能證明AC平面PME,從而AC⊥PE.

(2)連結(jié)DF,推導(dǎo)出MN平面PDF,MB平面PDF,從而平面MNB平面PDF,由此能證明PF平面BNM.

(1)連接PM,ME,

分別為AB、AD的中點(diǎn),菱形ABCD中,

, ,等腰三角形中,,

,

,又,

,,

.

(2)連接DF,分別為邊BA、BC、AD、AP的中點(diǎn),

,,

,,

,,

,.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義域在R的單調(diào)增函數(shù)滿(mǎn)足恒等式x,),且.

(1)求;

(2)判斷函數(shù)的奇偶性,并證明;

(3)若對(duì)于任意,都有成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知正項(xiàng)等比數(shù)列的前n項(xiàng)和,滿(mǎn)足,則的最小值為

A. B. 3 C. 4 D. 12

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直三棱柱ABC—A1B1C1中,∠ACB=90°,AC=2,BC=CC1,P是BC1上一動(dòng)點(diǎn),則A1P+PC的最小值為_________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知雙曲線(xiàn)與橢圓有相同焦點(diǎn),且經(jīng)過(guò)點(diǎn)(4,6)

(1)求雙曲線(xiàn)方程;

(2)若雙曲線(xiàn)的左,右焦點(diǎn)分別是F1,F2,試問(wèn)在雙曲線(xiàn)上是否存在點(diǎn)P,使得|PF1|5|PF2|.請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=|x-m|-|2x+3m|(m>0).

(1)當(dāng)m=1時(shí),求不等式f(x)≥1的解集;

(2)對(duì)于任意實(shí)數(shù)x,t,不等式f(x)<|2+t|+|t-1|恒成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)等差數(shù)列的首項(xiàng)和公差都是非負(fù)的整數(shù),項(xiàng)數(shù)不少于3,且各項(xiàng)和為,則這樣的數(shù)列共有

A2個(gè) B3個(gè) C4個(gè) D5個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知橢圓的右焦點(diǎn)為,左、右頂點(diǎn)分別為、,上、下頂點(diǎn)分別為,連結(jié)并延長(zhǎng)交橢圓于點(diǎn),連結(jié),,記橢圓的離心率為.

1)若,.

①求橢圓的標(biāo)準(zhǔn)方程;

②求的面積之比.

2)若直線(xiàn)和直線(xiàn)的斜率之積為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,是圓的直徑,垂直圓所在的平面,是圓上的一點(diǎn).

1)求證:平面 平面

2)若,求直線(xiàn)與平面所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案