如圖,有一塊四邊形綠化區(qū)域,其中,,現(xiàn)準(zhǔn)備經(jīng)過(guò)上一點(diǎn)上一點(diǎn)鋪設(shè)水管,且將四邊形分成面積相等的兩部分,設(shè),

①求的關(guān)系式;②求水管的長(zhǎng)的最小值.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

【答案】

 如圖,有一塊四邊形綠化區(qū)域,其中,,,現(xiàn)準(zhǔn)備經(jīng)過(guò)上一點(diǎn)上一點(diǎn)鋪設(shè)水管,且將四邊形分成面積相等的兩部分,設(shè),

①求的關(guān)系式;②求水管的長(zhǎng)的最小值.

解析:①延長(zhǎng)BD、CE交于A,則AD=,AE=2

 則S△ADE= S△BDE= S△BCE= ∵S△APQ=

     ∴

=· .

 當(dāng),即,  

 

 

 

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,有一塊四邊形BCED綠化區(qū)域,其中∠C=∠D=90°,BC=BD=
3
,CE=DE=1,現(xiàn)準(zhǔn)備經(jīng)過(guò)DB上一點(diǎn)P和EC上一點(diǎn)Q鋪設(shè)水管PQ,且PQ將四邊形BCED分成面積相等的兩部分,設(shè)DP=x,EQ=y.
(1)求x,y的關(guān)系式;  (2)求水管PQ的長(zhǎng)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,有一塊矩形草地,要在這塊草地上開辟一個(gè)內(nèi)接四邊形建體育設(shè)施(圖中陰影部分),使其四個(gè)頂點(diǎn)分別落在矩形的四條邊上,已知AB=a(a>2),BC=2,且AE=AH=CF=CG,設(shè)AE=x,陰影部分面積為y.
(1)求y關(guān)于x的函數(shù)關(guān)系式,并指出這個(gè)函數(shù)的定義域;
(2)當(dāng)x為何值時(shí),陰影部分面積最大?最大值是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:期末題 題型:解答題

如圖,有一塊四邊形BCED的綠化區(qū)域,其中∠C=∠D=90°,BC=BD=,CE=DE=1.現(xiàn)準(zhǔn)備經(jīng)過(guò)DB上的一點(diǎn)P和EC上的一點(diǎn)Q鋪設(shè)水管PQ,且PQ將四邊形BCED分成面積相等的兩部分.設(shè)DP=x,EQ=y,
(1)求x,y的關(guān)系式;
(2)水管PQ至少輔設(shè)多長(zhǎng)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2009-2010學(xué)年江蘇省蘇州市實(shí)驗(yàn)中學(xué)高三(上)期初數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,有一塊四邊形BCED綠化區(qū)域,其中∠C=∠D=90°,,CE=DE=1,現(xiàn)準(zhǔn)備經(jīng)過(guò)DB上一點(diǎn)P和EC上一點(diǎn)Q鋪設(shè)水管PQ,且PQ將四邊形BCED分成面積相等的兩部分,設(shè)DP=x,EQ=y.
(1)求x,y的關(guān)系式;  (2)求水管PQ的長(zhǎng)的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案