函數(shù)f(x)=ln(-x2+2x+8)的單調(diào)增區(qū)間是   
【答案】分析:先求函數(shù)的定義域設(shè)u(x)=-x2+2x+8則f(x)=lnu(x),因?yàn)閷?duì)數(shù)函數(shù)的底數(shù)e>1,則對(duì)數(shù)函數(shù)為單調(diào)遞增函數(shù),要求f(x)函數(shù)的增區(qū)間只需求二次函數(shù)的增區(qū)間即可.
解答:解:由題意可得函數(shù)f(x)的定義域是(-2,4),
令u(x)=-x2+2x+8的增區(qū)間為(-2,1]
∵e>1,
∴函數(shù)f(x)的單調(diào)增區(qū)間為(-2,1]
故答案:(-2,1]
點(diǎn)評(píng):此題考查學(xué)生求對(duì)數(shù)函數(shù)及二次函數(shù)增減性的能力,以及會(huì)求復(fù)合函數(shù)的增減性的能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ln(ax+1)+x3-x2-ax.
(Ⅰ)若x=
2
3
為f(x)的極值點(diǎn),求實(shí)數(shù)a的值;
(Ⅱ)若y=f(x)在[1,+∞)上為增函數(shù),求實(shí)數(shù)a的取值范圍;
(Ⅲ)若a=-1使,方程f(1-x)-(1-x)3=
b
x
有實(shí)根,求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ln(ex+a)(a為常數(shù))是實(shí)數(shù)集R上的奇函數(shù).
(Ⅰ)求實(shí)數(shù)a的值;
(Ⅱ)討論關(guān)于x的方程lnx=f(x)(x2-2ex+m)的根的個(gè)數(shù).
(Ⅲ)證明:
ln(22-1)
22
+
ln(32-1)
32
+…+
ln(n2-1)
n2
2n2-n-1
2(n+1)
(n∈N*,n≥2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)=ln(aex-x-3)的定義域?yàn)镽,則實(shí)數(shù)a的取值范圍是
(e2,+∞)
(e2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=ln(x-1)的定義域?yàn)椋ā 。?/div>

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2005•武漢模擬)已知函數(shù)f(x)=ln(x-2)-
x22a
(a為常數(shù)且a≠0)
(1)求導(dǎo)數(shù)f′(x);
(2)求f(x)的單調(diào)區(qū)間.

查看答案和解析>>

同步練習(xí)冊(cè)答案