設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,且方程x2-anx-an=0有一根為Sn-1(n∈N*).
(1)求a1,a2;
(2)猜想數(shù)列{Sn}的通項(xiàng)公式,并給出證明.
【解】 (1)當(dāng)n=1時(shí),方程x2-a1x-a1=0有一根為S1-1=a1-1,∴(a1-1)2-a1(a1-1)-a1=0,
解得a1=.當(dāng)n=2時(shí),方程x2-a2x-a2=0有一根為S2-1=a1+a2-1=a2-,
-a2=0,解得a2=.
(2)由題意知(Sn-1)2-an(Sn-1)-an=0,
當(dāng)n≥2時(shí),an=Sn-Sn-1,代入上式整理得
SnSn-1-2Sn+1=0,
解得Sn=.
由(1)得S1=a1=,S2=a1+a2=+=.
猜想Sn=(n∈N*).
下面用數(shù)學(xué)歸納法證明這個(gè)結(jié)論.
①當(dāng)n=1時(shí),結(jié)論成立.
②假設(shè)n=k(k∈N*,k≥1)時(shí)結(jié)論成立,即Sk=,當(dāng)n=k+1時(shí),
即當(dāng)n=k+1時(shí)結(jié)論成立.
由①②知Sn=對(duì)任意的正整數(shù)n都成立.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
已知空間四個(gè)點(diǎn)A(1,1,1),B(-4,0,2),C(-3,-1,0),D(-1,0,4),則直線AD與平面ABC所成的角為( )
A.30° B.45° C.60° D.90°
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
在等差數(shù)列{an}中,若公差為d,且a1=d,那么有am+an=am+n,類比上述性質(zhì),寫出在等比數(shù)列{an}中類似的性質(zhì):________ .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知 的一個(gè)內(nèi)角為,并且三邊長(zhǎng)構(gòu)成公差為4的等差數(shù)列,則的面積為_______________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
設(shè)平面內(nèi)兩個(gè)向量的坐標(biāo)分別為、,則下列向量中是平面的法向量的是 ( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
如圖,圓柱內(nèi)接直三棱柱,該三棱柱的底面為圓柱底面的內(nèi)接三角形,且AB是圓O的直徑,且。在圓柱內(nèi)隨機(jī)選取一點(diǎn),記該點(diǎn)取自于三棱柱內(nèi)的概率為
(1)當(dāng)點(diǎn)C在圓周上運(yùn)動(dòng)時(shí),求的最大值;
(2)記平面與平面所成的角為,當(dāng)取最大值時(shí),求的值。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com