函數(shù)f(x)=p(x-)-2lnx,g(x)=,p∈R,

(1)若f(x)在x=2處取得極值,求p的值;

(2)若f(x)在其定義域內(nèi)為單調(diào)函數(shù),求p的取值范圍;

(3)若在[1,e]上至少存在一點(diǎn)x0,使得f(x0)>g(x0)成立,求p的取值范圍.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:志鴻系列訓(xùn)練必修一數(shù)學(xué)蘇教版 蘇教版 題型:044

已知函數(shù)f(x-2)=ax2-(a-3)x+(a-2)的圖象過(guò)點(diǎn)(1,0),設(shè)g(x)=f[f(x)],F(xiàn)(x)=p·g(x)+q·f(x)(p、q∈R).

(1)求a的值.

(2)求函數(shù)F(x)的解析式.

(3)是否存在實(shí)數(shù)p(p>0)和q,使F(x)在區(qū)間(-∞,f(2))上是增函數(shù)且在(f(2),0)上是減函數(shù)?請(qǐng)證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:設(shè)計(jì)必修一數(shù)學(xué)(人教A版) 人教A版 題型:044

已知函數(shù)f(x-2)=ax2-(a-3)x+(a-2)的圖象過(guò)點(diǎn)(1,0),設(shè)g(x)=f[f(x)],F(xiàn)(x)=p·g(x)+q·f(x)(p、q∈R).

(1)求a的值.

(2)求函數(shù)F(x)的解析式.

(3)是否存在實(shí)數(shù)p(p>0)和q,使F(x)在區(qū)間(-∞,f(2))上是增函數(shù)且在(f(2),0)上是減函數(shù)?請(qǐng)證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:新疆兵團(tuán)二中2012屆高三第六次月考數(shù)學(xué)理科試題 題型:044

已知函數(shù)f(x)=Asin(ωx+)(x∈R,A>0,ω>0,0<)圖象如圖,P是圖象的最高點(diǎn),Q為圖象與x軸的交點(diǎn),O為原點(diǎn).且||=2,||=,||=

(Ⅰ)求函數(shù)y=f(x)的解析式;

(Ⅱ)將函數(shù)y=f(x)圖象向右平移1個(gè)單位后得到函數(shù)y=g(x)的圖象,當(dāng)x∈[0,2]時(shí),求函數(shù)h(x)=f(x)·g(x)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:新疆兵團(tuán)二中2012屆高三第六次月考數(shù)學(xué)文科試題 題型:044

已知函數(shù)f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,0<φ)圖象如圖,P是圖象的最高點(diǎn),Q為圖象與x軸的交點(diǎn),O為原點(diǎn).且||=2,||=,||=

(Ⅰ)求函數(shù)y=f(x)的解析式;

(Ⅱ)將函數(shù)y=f(x)圖象向右平移1個(gè)單位后得到函數(shù)y=g(x)的圖象,當(dāng)x∈[0,2]時(shí),求函數(shù)h(x)=f(x)·g(x)的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案