(本題滿分10分)

求圓心在直線上,且經(jīng)過圓與圓的交點的圓方程.

 

【答案】

 (x+2)2 +(y+1)2 =17.

【解析】

試題分析:先通過兩圓方程聯(lián)立求得交點AB坐標(biāo),再根據(jù)圓的幾何性質(zhì)可知圓心應(yīng)線段AB的垂直平分線與直線x-y+1=0的交點,從而求得圓心坐標(biāo),再根據(jù)過點A,B求得半徑,寫出圓的標(biāo)準方程.

設(shè)圓與圓的交點為A、B,解方程組:

…………………………4分;

所以A(-1,3)、B(-6,-2)

因此直線AB的垂直平分線方程為:x+y+3=0…………………6分;

與x+y+3=0聯(lián)立,解得:x=-2,y=-1,即:所求圓心C為(-2,-1)……8分;

半徑r=AC=.

故所求圓C的方程為:(x+2)2 +(y+1)2 =17……………………………4分;.

考點:圓的標(biāo)準方程及幾何性質(zhì).

點評:求出兩圓的交點坐標(biāo)之后,關(guān)鍵是根據(jù)圓心是AB的垂直平分線與直線x-y+1=0的交點求出圓心坐標(biāo),從而求得圓的方程.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

 17.本題滿分10分已知函數(shù)的圖象在y軸上的截距為,相鄰的兩個最值點是(1)求函數(shù);(2)設(shè),問將函數(shù)的圖像經(jīng)過怎樣的變換可以得到 的圖像?(3)畫出函數(shù)在區(qū)間上的簡圖.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆浙江省高二下學(xué)期期中考試理科數(shù)學(xué)試卷(解析版) 題型:解答題

(本題滿分10分)

(Ⅰ)設(shè),求證:;

(Ⅱ)設(shè),求證:三數(shù),中至少有一個不小于2.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆河南省高二上學(xué)期期末考試理科數(shù)學(xué)試卷(解析版) 題型:解答題

(本題滿分10分)

如圖,已知正四棱柱ABCD—A1B1C1D1中,底面邊長AB=2,側(cè)棱BB1的長為4,過點B作B1C的垂線交側(cè)棱CC1于點E,交B1C于點F,

⑴求證:A1C⊥平面BDE;

⑵求A1B與平面BDE所成角的正弦值。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年江蘇省揚州市寶應(yīng)縣高三下學(xué)期期初測試數(shù)學(xué)試卷 題型:解答題

(本題滿分10分)

如圖,已知正三棱柱的所有棱長都為2,為棱的中點,

(1)求證:平面

(2)求二面角的余弦值大小.

 

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011年遼寧省高二上學(xué)期期末考試數(shù)學(xué)理卷 題型:解答題

(本題滿分10分)

如圖,要計算西湖岸邊兩景點的距離,由于地形的限制,需要在岸上選取兩點,現(xiàn)測得,, ,,求兩景點的距離(精確到0.1km).參考數(shù)據(jù):  

 

 

查看答案和解析>>

同步練習(xí)冊答案