已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)的長、短軸端點分別為A、B,從橢圓上一點M(在x軸上方)向x軸作垂線,恰好通過橢圓的左焦點F1,
AB
OM

(1)求橢圓的離心率e;
(2)設Q是橢圓上任意一點,F(xiàn)1、F2分別是左、右焦點,求∠F1QF2的取值范圍.
分析:(1)依題意,作圖如圖.由kAB=kOM可求得b=c,從而可求得橢圓的離心率.
(2)當點Q與橢圓長軸的端點重合時,∠F1QF2的大小為零;當點Q不與橢圓長軸的端點重合時,設∠F1QF2的大小為θ,在△F1QF2中,利用余弦定理,結合基本不等式和橢圓的定義,可以證出4a2-4c2≤2a2(1+cosθ),結合(1)a2=2c2,可以證出cosθ≥0,從而得到0<θ≤
π
2
.最后綜合,得到θ∈[0,
π
2
],即為∠F1QF2的取值范圍.
解答:精英家教網(wǎng)解:依題意,作圖如圖:
(1)設F1(-c,0),則xM=-c,yM=
b2
a

∴kOM=-
b2
ac

∵kAB=-
b
a
,
OM
AB
,
∴-
b2
ac
=-
b
a
,
∴b=c,故e=
c
a
=
2
2

(1)設|F1Q|=r1,|F2Q|=r2,∠F1QF2=θ,
∴r1+r2=2a,|F1F2|=2c.
cos θ=
r12+
r
2
2
-4c2
2r1r2
=
(r1+r2)2-2r1r2-4c2
2r1r2

=
2b2
r1r2
-1≥
2b2
(
r1+r2
2
)2
-1=0,
當且僅當r1=r2時,cos θ=0,
∴θ∈[0,
π
2
].
點評:本題考查橢圓的簡單性質,由kAB=kOM求得b=c是關鍵,考查理解與運算能力,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的左右焦點分別為F1,F(xiàn)2,左頂點為A,若|F1F2|=2,橢圓的離心率為e=
1
2

(Ⅰ)求橢圓的標準方程,
(Ⅱ)若P是橢圓上的任意一點,求
PF1
PA
的取值范圍
(III)直線l:y=kx+m與橢圓相交于不同的兩點M,N(均不是長軸的頂點),AH⊥MN垂足為H且
AH
2
=
MH
HN
,求證:直線l恒過定點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)的左焦點F(-c,0)是長軸的一個四等分點,點A、B分別為橢圓的左、右頂點,過點F且不與y軸垂直的直線l交橢圓于C、D兩點,記直線AD、BC的斜率分別為k1,k2
(1)當點D到兩焦點的距離之和為4,直線l⊥x軸時,求k1:k2的值;
(2)求k1:k2的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的離心率是
3
2
,且經(jīng)過點M(2,1),直線y=
1
2
x+m(m<0)
與橢圓相交于A,B兩點.
(1)求橢圓的方程;
(2)當m=-1時,求△MAB的面積;
(3)求△MAB的內心的橫坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•威海二模)已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的離心率為e=
6
3
,過右焦點做垂直于x軸的直線與橢圓相交于兩點,且兩交點與橢圓的左焦點及右頂點構成的四邊形面積為
2
6
3
+2

(Ⅰ)求橢圓的標準方程;
(Ⅱ)設點M(0,2),直線l:y=1,過M任作一條不與y軸重合的直線與橢圓相交于A、B兩點,若N為AB的中點,D為N在直線l上的射影,AB的中垂線與y軸交于點P.求證:
ND
MP
AB
2
為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)的右焦點為F,過F作y軸的平行線交橢圓于M、N兩點,若|MN|=3,且橢圓離心率是方程2x2-5x+2=0的根,求橢圓方程.

查看答案和解析>>

同步練習冊答案