(本小題滿(mǎn)分14分)

        在數(shù)列中,已知,其中。

   (I)若,求數(shù)列的前n項(xiàng)和;

   (II)證明:當(dāng)時(shí),數(shù)列中的任意三項(xiàng)都不能構(gòu)成等比數(shù)列;

   (III)設(shè)集合,試問(wèn)在區(qū)間[1,a]上是否存在實(shí)數(shù)b使得,若存在,求出b的一切可能的取值及相應(yīng)的集合C;若不存在,說(shuō)明理由。

 

【答案】

(1)(2)略(3)b=1

【解析】(I)因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052017383409373225/SYS201205201740308593315213_DA.files/image002.png">           …………1分

所以                                            …………3分

因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052017383409373225/SYS201205201740308593315213_DA.files/image005.png">                                  …………4分

所以是等差數(shù)列,                              …………4分

所以數(shù)列…………5分

   (II)由已知

假設(shè)成等比數(shù)列,其中,且彼此不等,

                          …………6分

[來(lái)源:Zxxk.Com]

可得矛盾。                                           …………7分

為無(wú)理數(shù),

所以是整數(shù)矛盾。   …………9分

所以數(shù)列中的任意三項(xiàng)都不能構(gòu)成等比數(shù)列。

   (III)設(shè)存在實(shí)數(shù),

所以整除。                                           …………10分

   (1)當(dāng)

所以                                                   …………11分

   (2)當(dāng),

所以,當(dāng)且僅當(dāng)整除。            …………12分

   (3)當(dāng)時(shí) ,

整除。                                                 …………13分[來(lái)源:學(xué)*科*網(wǎng)]

綜上,在區(qū)間[1,a]上存在實(shí)數(shù)b,使成立,且當(dāng)b=1時(shí),

       …………14分

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•廣東模擬)(本小題滿(mǎn)分14分 已知函數(shù)f(x)=
3
sin2x+2sin(
π
4
+x)cos(
π
4
+x)

(I)化簡(jiǎn)f(x)的表達(dá)式,并求f(x)的最小正周期;
(II)當(dāng)x∈[0,
π
2
]  時(shí),求函數(shù)f(x)
的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本小題滿(mǎn)分14分)設(shè)橢圓C1的方程為(ab>0),曲線C2的方程為y=,且曲線C1C2在第一象限內(nèi)只有一個(gè)公共點(diǎn)P。(1)試用a表示點(diǎn)P的坐標(biāo);(2)設(shè)AB是橢圓C1的兩個(gè)焦點(diǎn),當(dāng)a變化時(shí),求△ABP的面積函數(shù)S(a)的值域;(3)記min{y1,y2,……,yn}為y1,y2,……,yn中最小的一個(gè)。設(shè)g(a)是以橢圓C1的半焦距為邊長(zhǎng)的正方形的面積,試求函數(shù)f(a)=min{g(a), S(a)}的表達(dá)式。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年江西省撫州市教研室高二上學(xué)期期末數(shù)學(xué)理卷(A) 題型:解答題

(本小題滿(mǎn)分14分)
已知=2,點(diǎn)()在函數(shù)的圖像上,其中=.
(1)證明:數(shù)列}是等比數(shù)列;
(2)設(shè),求及數(shù)列{}的通項(xiàng)公式;
(3)記,求數(shù)列{}的前n項(xiàng)和,并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015屆山東省威海市高一上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題

 (本小題滿(mǎn)分14分)

某網(wǎng)店對(duì)一應(yīng)季商品過(guò)去20天的銷(xiāo)售價(jià)格及銷(xiāo)售量進(jìn)行了監(jiān)測(cè)統(tǒng)計(jì)發(fā)現(xiàn),第天()的銷(xiāo)售價(jià)格(單位:元)為,第天的銷(xiāo)售量為,已知該商品成本為每件25元.

(Ⅰ)寫(xiě)出銷(xiāo)售額關(guān)于第天的函數(shù)關(guān)系式;

(Ⅱ)求該商品第7天的利潤(rùn);

(Ⅲ)該商品第幾天的利潤(rùn)最大?并求出最大利潤(rùn).

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年廣東省高三下學(xué)期第一次月考文科數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿(mǎn)分14分)已知的圖像在點(diǎn)處的切線與直線平行.

⑴ 求,滿(mǎn)足的關(guān)系式;

⑵ 若上恒成立,求的取值范圍;

⑶ 證明:

 

查看答案和解析>>

同步練習(xí)冊(cè)答案