設(shè)點(diǎn)F是拋物L(fēng):y2=2px(p>0)的焦點(diǎn),P1,P2,…,Pn是拋物線L上的n個(gè)不同的點(diǎn)n(n≥3,n∈N*).
(1)當(dāng)p=2時(shí),試寫出拋物線L上三點(diǎn)P1、P2、P3的坐標(biāo),時(shí)期滿足數(shù)學(xué)公式;
(2)當(dāng)n≥3時(shí),若數(shù)學(xué)公式,求證:數(shù)學(xué)公式;
(3)當(dāng)n>3時(shí),某同學(xué)對(duì)(2)的逆命題,即:“若數(shù)學(xué)公式,則數(shù)學(xué)公式”開展了研究并發(fā)現(xiàn)其為假命題.
請(qǐng)你就此從以下三個(gè)研究方向中任選一個(gè)開展研究:
1.試構(gòu)造一個(gè)說明該命題確實(shí)是假命題的反例;
2.對(duì)任意給定的大于3的正整數(shù)n,試構(gòu)造該假命題反例的一般形式,并說明你的理由:
3.如果補(bǔ)充一個(gè)條件后能使該命題為真,請(qǐng)寫出你認(rèn)為需要補(bǔ)充的一個(gè)條件,并說明加上該條件后,能使該逆命題為真命題的理由.

解:(1)拋物線l的焦點(diǎn)為F(,0),設(shè)P1(x1,y1),P2(x2,y2),P3(x3,y3),
分別過P1、P2、P3作拋物線的準(zhǔn)線l的垂線,垂足分別為Q1、Q2、Q3,
=(x1+)+(x2+)+(x3+)=x1+x2+x3+=6
∵p=2,∴x1+x2+x3=3
故可取P1),P2(1,2),P3,)滿足條件;
(2)設(shè)P1(x1,y1),P2(x2,y2),P3(x3,y3),…,Pn(xn,yn),分別過P1、P2、P3,…,Pn作拋物線的準(zhǔn)線l的垂線,垂足分別為Q1、Q2、Q3,…,Qn
=(x1+)+(x2+)+(x3+)+…+(xn+)=x1+x2+x3+…+xn+

∴x1+x2+x3+…+xn=
=+=np
(3)①取n=4時(shí),拋物線l的焦點(diǎn)為F(,0),設(shè)P1(x1,y1),P2(x2,y2),P3(x3,y3),P4(x4,y4),分別過P1、P2、P3,P4作拋物線的準(zhǔn)線l的垂線,垂足分別為Q1、Q2、Q3,Q4,
=x1+x2+x3+x4+2p=4p
∴x1+x2+x3+x4=2p
不妨取,,則
,是一個(gè)當(dāng)n=4時(shí),該逆命題的一個(gè)反例;
②設(shè)P1(x1,y1),P2(x2,y2),P3(x3,y3),…,Pn(xn,yn),分別過P1、P2、P3,…,Pn作拋物線的準(zhǔn)線l的垂線,垂足分別為Q1、Q2、Q3,…,Qn
,∴x1+x2+x3+…+xn+=np,∴x1+x2+x3+…+xn=
因?yàn)樯鲜霰磉_(dá)式與點(diǎn)的縱坐標(biāo)無關(guān),所以將這n點(diǎn)都取在x軸的上方,則它們的縱坐標(biāo)都大于0,則
=(0,y1+y2+…+yn)≠
③補(bǔ)充條件:點(diǎn)Pi的縱坐標(biāo)滿足y1+y2+…+yn=0,即當(dāng)n>3時(shí),,點(diǎn)Pi的縱坐標(biāo)滿足y1+y2+…+yn=0,則
由②知,命題為真.
分析:(1)拋物線l的焦點(diǎn)為F(,0),設(shè)P1(x1,y1),P2(x2,y2),P3(x3,y3),利用拋物線的定義可得x1+x2+x3=3,故可取滿足條件的三點(diǎn);
(2)設(shè)P1(x1,y1),P2(x2,y2),P3(x3,y3),…,Pn(xn,yn),分別過P1、P2、P3,…,Pn作拋物線的準(zhǔn)線l的垂線,垂足分別為Q1、Q2、Q3,…,Qn,利用拋物線的定義可得x1+x2+x3+…+xn=,從而可證=np
(3)①取n=4時(shí),拋物線l的焦點(diǎn)為F(,0),設(shè)P1(x1,y1),P2(x2,y2),P3(x3,y3),P4(x4,y4),分別過P1、P2、P3,P4作拋物線的準(zhǔn)線l的垂線,垂足分別為Q1、Q2、Q3,Q4,利用拋物線的定義,可得x1+x2+x3+x4=2p,從而可得結(jié)論;
②設(shè)P1(x1,y1),P2(x2,y2),P3(x3,y3),…,Pn(xn,yn),分別過P1、P2、P3,…,Pn作拋物線的準(zhǔn)線l的垂線,垂足分別為Q1、Q2、Q3,…,Qn,利用拋物線的定義,可得x1+x2+x3+…+xn=,從而可得結(jié)論;
③補(bǔ)充條件:點(diǎn)Pi的縱坐標(biāo)滿足y1+y2+…+yn=0,即當(dāng)n>3時(shí),,點(diǎn)Pi的縱坐標(biāo)滿足y1+y2+…+yn=0,則
點(diǎn)評(píng):本題考查拋物線的定義,考查向量的運(yùn)算,解題的關(guān)鍵是正確運(yùn)用拋物線的定義,難度較大.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•普陀區(qū)一模)設(shè)點(diǎn)F是拋物L(fēng):y2=2px(p>0)的焦點(diǎn),P1,P2,…,Pn是拋物線L上的n個(gè)不同的點(diǎn)n(n≥3,n∈N*).
(1)當(dāng)p=2時(shí),試寫出拋物線L上三點(diǎn)P1、P2、P3的坐標(biāo),時(shí)期滿足|
FP1
|+|
FP2
|+|
FP3
|=6
;
(2)當(dāng)n≥3時(shí),若
FP1
+
FP2
+…+
FPn
=
0
,求證:|
FP1
|+|
FP2
|+…+|
FPn
|=np

(3)當(dāng)n>3時(shí),某同學(xué)對(duì)(2)的逆命題,即:“若|
FP1
|+| 
FP2
|+…+|  
FPN
|=np
,則
FP1
+
FP2
+…+
FPN
=
0
”開展了研究并發(fā)現(xiàn)其為假命題.
請(qǐng)你就此從以下三個(gè)研究方向中任選一個(gè)開展研究:
1.試構(gòu)造一個(gè)說明該命題確實(shí)是假命題的反例;
2.對(duì)任意給定的大于3的正整數(shù)n,試構(gòu)造該假命題反例的一般形式,并說明你的理由:
3.如果補(bǔ)充一個(gè)條件后能使該命題為真,請(qǐng)寫出你認(rèn)為需要補(bǔ)充的一個(gè)條件,并說明加上該條件后,能使該逆命題為真命題的理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年上海市普陀區(qū)高考數(shù)學(xué)一模試卷(理科)(解析版) 題型:解答題

設(shè)點(diǎn)F是拋物L(fēng):y2=2px(p>0)的焦點(diǎn),P1,P2,…,Pn是拋物線L上的n個(gè)不同的點(diǎn)n(n≥3,n∈N*).
(1)當(dāng)p=2時(shí),試寫出拋物線L上三點(diǎn)P1、P2、P3的坐標(biāo),時(shí)期滿足;
(2)當(dāng)n≥3時(shí),若,求證:;
(3)當(dāng)n>3時(shí),某同學(xué)對(duì)(2)的逆命題,即:“若,則”開展了研究并發(fā)現(xiàn)其為假命題.
請(qǐng)你就此從以下三個(gè)研究方向中任選一個(gè)開展研究:
1.試構(gòu)造一個(gè)說明該命題確實(shí)是假命題的反例;
2.對(duì)任意給定的大于3的正整數(shù)n,試構(gòu)造該假命題反例的一般形式,并說明你的理由:
3.如果補(bǔ)充一個(gè)條件后能使該命題為真,請(qǐng)寫出你認(rèn)為需要補(bǔ)充的一個(gè)條件,并說明加上該條件后,能使該逆命題為真命題的理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案