3.直線l:y=kx+1與雙曲線C:2x2-y2=1.
(1)若直線與雙曲線有且僅有一個公共點,求實數(shù)k的取值范圍;
(2)若直線分別與雙曲線的兩支各有一個公共點,求實數(shù)k的取值范圍.

分析 將直線方程代入雙曲線方程,化為關于x的方程,利用方程的判別式,即可求得k的取值范圍.

解答 解:由題意,直線l:y=kx+1與雙曲線C:2x2-y2=1,可得2x2-(kx+1)2=1,整理得(2-k2)x2-2kx-2=0.
(1)只有一個公共點,當2-k2=0,k=±$\sqrt{2}$時,符合條件;當2-k2≠0時,由△=16-4k2=0,解得k=±2;
(2)交于異支兩點,$\frac{-2}{2-{k}^{2}}$<0,解得-$\sqrt{2}$<k<$\sqrt{2}$.

點評 本題考查直線與圓錐曲線的關系,解題的關鍵是將問題轉化為方程根的問題,運用判別式解決,注意只有一個公共點時,不要忽視了與漸近線平行的情況,屬于易錯題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

13.下列說法正確的是( 。
A.若“p或q”為真,則“p且q”也為真
B.命題“若x=2,則x2-5x+6=0”的否命題是“若x=2,則x2-5x+6≠0”
C.已知a,b∈R,命題“若a>b,則|a|>|b|”的逆否命題是真命題
D.已知a,b,m∈R,命題“若am2<bm2,則a<b”為真命題

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.下列四個命題中:
①“等邊三角形的三個內角均為60°?”的逆命題;
②“若k>0,則方程x2+2x-k=0有實根”的逆否命題;
③“全等三角形的面積相等”的否命題;
④“若ab≠0,則a≠0”的否命題.
其中真命題的個數(shù)是①②.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.不等式$\frac{3x-1}{2-x}≤1$的解集是( 。
A.{x|$\frac{3}{4}$≤x≤2}B.{x|$\frac{3}{4}$≤x<2}C.{x|x<2}D.{x|x>2或x≤$\frac{3}{4}$}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.已知拋物線C:y2=4x的焦點為F,準線為l,P是l上一點,Q是直線PF與C的一個交點,若$\overrightarrow{FP}=5\overrightarrow{FQ}$,則|QF|=( 。
A.$\frac{7}{2}$B.$\frac{8}{5}$C.$\frac{5}{2}$D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.在復平面內,復數(shù)2-i(i是虛數(shù)單位)的共軛復數(shù)對應的點位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.給出一個算法:

根據(jù)以上算法,可求得f(-1)+f(3)的值為4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.方程lnx+2x-6=0的近似解所在的區(qū)間是( 。
A.(1,2)B.(2,3)C.(3,4)D.(4,5)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.執(zhí)行如圖的程序框圖,則輸出S的值為(  )
A.$\frac{tan2017°-tan1949°}{tan1°}$-67B.$\frac{tan2016°-tan1949°}{tan1°}$-67
C.$\frac{tan2017°-tan1949°}{tan1°}$-68D.$\frac{tan2016°-tan1949°}{tan1°}$-68

查看答案和解析>>

同步練習冊答案