(本小題滿分13分)
已知橢圓的焦點(diǎn)分別為,且過點(diǎn)
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)為橢圓內(nèi)一點(diǎn),直線交橢圓兩點(diǎn),且為線段的中點(diǎn),求直線的方程.

(1)由已知條件得橢圓的焦點(diǎn)在軸上,其中………3分
所以橢圓的標(biāo)準(zhǔn)方程是:………6分
(2)設(shè),因?yàn)辄c(diǎn)都在橢圓上,
,………10分
………11分
又直線過點(diǎn),所以直線方程為………13分

解析

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

直線與橢圓交于兩點(diǎn),已知,,若且橢圓的離心率,又橢圓經(jīng)過點(diǎn),為坐標(biāo)原點(diǎn).
(Ⅰ)求橢圓的方程;
(Ⅱ)若直線過橢圓的焦點(diǎn)為半焦距),求直線的斜率的值;
(Ⅲ)試問:的面積是否為定值?如果是,請給予證明;如果不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,曲線C1是以原點(diǎn)O為中心,F(xiàn)1、F2為焦點(diǎn)的橢圓的一部分,曲線C2是以原點(diǎn)O為頂點(diǎn),F(xiàn)2為焦點(diǎn)的拋物線的一部分,是曲線C1和C2的交點(diǎn).
(Ⅰ)求曲線C1和C2所在的橢圓和拋物線的方程;
(Ⅱ)過F2作一條與x軸不垂直的直線,分別與曲線C1、C2依次交于B、C、D、E四點(diǎn),若G為CD中點(diǎn),H為BE中點(diǎn),問是否為定值,若是,求出定值;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在圓上任取一點(diǎn),過點(diǎn)軸的垂線段,為垂足.當(dāng)點(diǎn)在圓上運(yùn)動時,線段的中點(diǎn)形成軌跡
(1)求軌跡的方程;
(2)若直線與曲線交于兩點(diǎn),為曲線上一動點(diǎn),求面積的最大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分12分)已知是橢圓的兩個焦點(diǎn),是橢圓上的點(diǎn),且
(1)求的周長;   
(2)求點(diǎn)的坐標(biāo)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(12分)已知橢的離心率為,直線與以原點(diǎn)為圓心,以橢圓的短半軸長為半徑的圓相切。
、求橢圓的方程;
、過點(diǎn)的直線(斜率存在時)與橢圓交于、兩點(diǎn),設(shè)為橢圓軸負(fù)半軸的交點(diǎn),且,求實(shí)數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題


查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)已知離心率為的橢圓上的點(diǎn)到
左焦點(diǎn)的最長距離為
(1)求橢圓的方程;
(2)如圖,過橢圓的左焦點(diǎn)任作一條與兩坐標(biāo)軸都不垂直的弦,若點(diǎn)軸上,且使得的一條內(nèi)角平分線,則稱點(diǎn)為該橢圓的“左特征點(diǎn)”,求橢圓的“左特征點(diǎn)”的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

極坐標(biāo)方程表示的曲線為( )

A.極點(diǎn) B.極軸 C.一條直線 D.兩條相交直線

查看答案和解析>>

同步練習(xí)冊答案