設(shè)函數(shù)f(x)的定義域?yàn)镽,且f(x)是以3為周期的奇函數(shù),|f(1)|>2,f(2)=loga4 (a>0,且a≠1),則實(shí)數(shù)a的取值范圍是
(
1
2
,1)∪(1,2)
(
1
2
,1)∪(1,2)
分析:利用函數(shù)的周期性和奇偶性,建立f(2)和f(1)之間的關(guān)系,然后利用,|f(1)|>2,解不等式即可.
解答:解:因?yàn)椋▁)是以3為周期的奇函數(shù),所以f(2)=f(2-3)=f(-1)=-f(1),即f(1)=-f(2).
所以由,|f(1)|>2得,|-f(2)|>2,即|f(2)|>2,
所以|loga4|>2,即loga4>2或loga4<-2,
解得1<a<2或
1
2
<a<1

故答案為:(
1
2
,1)∪(1,2)
點(diǎn)評(píng):本題主要考查函數(shù)奇偶性和周期性的應(yīng)用,以及對(duì)數(shù)不等式的基本解法,綜合性較強(qiáng).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)的定義在R上的偶函數(shù),且是以4為周期的周期函數(shù),當(dāng)x∈[0,2]時(shí),f(x)=2x-cosx,則a=f(-
3
2
)與b=f(
15
2
)的大小關(guān)系為
a>b
a>b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)的定義域?yàn)镈,若對(duì)于任意x1,x2∈D,當(dāng)x1<x2時(shí),都有f(x1)≤f(x2),則稱函數(shù)f(x)在D上為非減函數(shù).設(shè)函數(shù)f(x)為定義在[0,1]上的非減函數(shù),且滿足以下三個(gè)條件:①f(0)=0;②f(1-x)+f(x)=1,x∈[0,1]; ③當(dāng)x∈[0,
1
4
]
時(shí),f(x)≥2x恒成立.則f(
3
7
)+f(
5
9
)
=
1
1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

設(shè)函數(shù)f(x)的定義在R上的偶函數(shù),且是以4為周期的周期函數(shù),當(dāng)x∈[0,2]時(shí),f(x)=2x-cosx,則a=f(-數(shù)學(xué)公式)與b=f(數(shù)學(xué)公式)的大小關(guān)系為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年安徽省蚌埠二中高三(上)12月月考數(shù)學(xué)試卷(文科)(解析版) 題型:填空題

設(shè)函數(shù)f(x)的定義在R上的偶函數(shù),且是以4為周期的周期函數(shù),當(dāng)x∈[0,2]時(shí),f(x)=2x-cosx,則a=f(-)與b=f()的大小關(guān)系為   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:山東省月考題 題型:填空題

設(shè)函數(shù)f(x)的定義在R上的偶函數(shù),且是以4為周期的周期函數(shù),當(dāng)x∈[0,2]時(shí),f(x)=2x﹣cosx,則a=f(﹣)與b=f()的大小關(guān)系為(    ).

查看答案和解析>>

同步練習(xí)冊(cè)答案