(2013•長春一模)已知復(fù)數(shù)z=1+ai(a∈R)(i是虛數(shù)單位),
.
z
z
=-
3
5
+
4
5
i
,則a=(  )
分析:由題意可得
1-ai
1+ai
=-
3
5
+
4
5
i
,再由兩個復(fù)數(shù)相等的充要條件可得
1-a2
1+a2
=-
3
5
,
-2ai
1+a2
=
4
5
,由此求得a的值.
解答:解:由題意可得
1-ai
1+ai
=-
3
5
+
4
5
i
,即
(1-ai)2
1+a2
=
1-a2-2ai
1+a2
=-
3
5
+
4
5
i

1-a2
1+a2
=-
3
5
,
-2ai
1+a2
=
4
5
,
∴a=-2,
故選B.
點評:本題主要考查復(fù)數(shù)的基本概念,兩個復(fù)數(shù)代數(shù)形式的除法,兩個復(fù)數(shù)相等的充要條件,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•長春一模)已知:x>0,y>0,且
2
x
+
1
y
=1
,若x+2y>m2+2m恒成立,則實數(shù)m的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•長春一模)已知函數(shù)f(x)=ex(ax2-2x-2),a∈R且a≠0.
(1)若曲線y=f(x)在點P(2,f(2))處的切線垂直于y軸,求實數(shù)a的值;
(2)當(dāng)a>0時,求函數(shù)f(|sinx|)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•長春一模)橢圓
 x2
a2
+
y2
b2
=1(a>b>0)
的離心率為
3
2
,右焦點到直線x+y+
6
=0
的距離為2
3
,過M(0,-1)的直線l交橢圓于A,B兩點.
(Ⅰ) 求橢圓的方程;
(Ⅱ) 若直線l交x軸于N,
NA
=-
7
5
NB
,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•長春一模)定義在R上的函數(shù)f(x)滿足f(x)+f(x+5)=16,當(dāng)x∈(-1,4]時,f(x)=x2-2x,則函數(shù)f(x)在[0,2013]上的零點個數(shù)是
604
604

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•長春一模)在正項等比數(shù)列{an}中,已知a1a2a3=4,a4a5a6=12,an-1anan+1=324,則n=( 。

查看答案和解析>>

同步練習(xí)冊答案