已知向量
a
b
的夾角為120°,且|
a
|=2,|
b
|=1,則|
a
+2
b
|=
 
考點:數(shù)量積表示兩個向量的夾角
專題:平面向量及應(yīng)用
分析:由題意可得
a
2
=4,
b
2
=1,
a
b
=-1,再根據(jù)|
a
+2
b
|=
(
a
+2
b
)
2
=
a
2
+4
a
b
+4
b
2
,計算求得結(jié)果.
解答: 解:由題意可得
a
2
=4,
b
2
=1,
a
b
=2×1×cos120°=-1,
∴|
a
+2
b
|=
(
a
+2
b
)
2
=
a
2
+4
a
b
+4
b
2
=
4-4+4
=2,
故答案為:2.
點評:本題主要考查兩個向量的數(shù)量積的定義,求向量的模的方法,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知tanα=2,則
sinα+2cosα
2sinα-cosα
的值等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC中,角A,B,C所對的邊分別為a,b,c,若1+
tanA
tanB
=
2c
b
,則
b+c
a
的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某運動比賽項目參賽領(lǐng)導(dǎo)小組要從甲、乙、丙、丁、戊五名志愿者中選派四人分別從事翻譯、導(dǎo)游、禮儀、司機四項不同工作,若其中甲、乙只能從事前三項工作,其余三人均能從事這四項工作,則不同的選派方案共有
 
種(用數(shù)字作答).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在復(fù)平面上,已知直線l上的點Z所對應(yīng)的復(fù)數(shù)z都滿足|z-3|=|z+4-i|,則直線l的傾斜角為
 
.(結(jié)果用反三角函數(shù)值表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某校為了解高三男生的身體狀況,檢測了全部480名高三男生的體重(單位:kg),所得數(shù)據(jù)都在區(qū)間[50,75]中,其頻率分布直方圖如圖所示.若圖中從左到右的前3個小組的頻率之比為1:2:3,則體重小于60kg的高三男生人數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列六個命題
①f(x)=
x-2
+
1-x
是函數(shù);
②函數(shù)y=log
1
2
(x+1)在區(qū)間(0,1)上遞增;
③函數(shù)y=2x(x∈N)的圖象是一條直線;
④x>1是
1
x
<1的充分不必要條件;
⑤若Z是虛數(shù),則Z2≥0;
⑥若函數(shù)y=x2的值域是{y|0≤y≤4},則它的定義域一定是{x|-2≤x≤2};
其中真命題序號是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

先后拋擲兩枚均勻的正方體骰子,骰子朝上的面的點數(shù)分別為a,b,則logab=1的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

f(x)是定義在區(qū)間[-c,c]上的奇函數(shù),其圖象如圖所示:令g(x)=af(x)+b,則下列關(guān)于函數(shù)g(x)的敘述正確的是( 。
A、若a<0,則函數(shù)g(x)的圖象關(guān)于原點對稱.
B、若a=1,0<b<2,則方程g(x=0)有大于2的實根.
C、若a=-2,b=0,則函數(shù)g(x)的圖象關(guān)于y軸對稱
D、若 a≠0,b=2,則方程g(x)=0有三個實根

查看答案和解析>>

同步練習(xí)冊答案