已知++3≤0,求函數(shù)y=的最大值和最小值.

解:由++3≤0,解得-3≤≤-,即≤log2x≤3.

又y==(log2x-1)(-2+log2x)=(log2x-)2-,所以當log2x=,即x=時,y取得最小值;當log2x=3,即x=8時,y取得最大值2.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=loga
2m-1-mxx+1
(a>0,a≠1)
是奇函數(shù),定義域為區(qū)間D(使表達式有意義的實數(shù)x 的集合).
(1)求實數(shù)m的值,并寫出區(qū)間D;
(2)若底數(shù)a滿足0<a<1,試判斷函數(shù)y=f(x)在定義域D內的單調性,并說明理由;
(3)當x∈A=[a,b)(A⊆D,a是底數(shù))時,函數(shù)值組成的集合為[1,+∞),求實數(shù)a、b的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

對于函數(shù)f(x)=x-2-lnx,我們知道f(3)=1-ln3<0,f(4)=2-ln4>0,用二分法求函數(shù)f(x)在區(qū)間(3,4)內的零點的近似值,我們先求出函數(shù)值f(3.5),若已知ln3.5=1.25,則接下來我們要求的函數(shù)值是f (
3.25
3.25
).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=a-
1|2x-b|
是偶函數(shù),a為實常數(shù).
(1)求b的值;
(2)當a=1時,是否存在m,n(n>m>0)使得函數(shù)y=f(x)在區(qū)間[m,n]上的函數(shù)值組成的集合也是[m,n],若存在,求出m,n的值,否則,說明理由;
(3)若在函數(shù)定義域內總存在區(qū)間[m,n](m<n),使得y=f(x)在區(qū)間[m,n]上的函數(shù)值組成的集合也是[m,n],求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
x-2
ax+1
(a>1,x∈R,x≠-
1
a
)

(1)試問:該函數(shù)的圖象上是否存在不同的兩點,它們的函數(shù)值相同,請說明理由;
(2)若函數(shù)F(x)=ax+f(x),試問:方程F(x)=0有沒有負根,請說明理由.
(3)記G(x)=|ax-b|-b•ax,(x∈R),若G(x)有最小值,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:中學教材全解 高中數(shù)學 必修1(人教A版) 人教A版 題型:044

已知函數(shù)

(1)求圖象的開口方向,對稱軸,頂點坐標,與x軸交點坐標.

(2)求函數(shù)的單調區(qū)間,最值,零點.

(3)設圖象與x軸相交于點(x1,0),(x2,0),不求出根,求|x1-x2|.

(4)已知,不計算函數(shù)值,求

(5)不計算函數(shù)值,試比較的大。

(6)寫出使函數(shù)值為負數(shù)的自變量x的集合.

查看答案和解析>>

同步練習冊答案