【題目】某興趣小組有9名學(xué)生.若從9名學(xué)生中選取3人,則選取的3人中恰好有一個女生的概率是 .
(1)該小組中男女學(xué)生各多少人?
(2)9個學(xué)生站成一列隊,現(xiàn)要求女生保持相對順序不變(即女生 前后順序保持不變)重新站隊,問有多少種重新站隊的方法?(要求用數(shù)字作答)
(3)9名學(xué)生站成一列,要求男生必須兩兩站在一起,有多少種站隊的方法?(要求用數(shù)字作答)
【答案】
(1)解:設(shè)男生有x人,則 ,即x(x﹣1)(9﹣x)=90,解之得,x=6
故男生有6人,女生有3人.
(2)解:(方法一)按坐座位的方法:
第一步:讓6名男生先從9個位置中選6個位置坐,共有 =60480種;
第二步:余下的座位讓3個女生去坐,因為要保持相對順序不變,故只有1種選擇;
故,一共有60480×1﹣1=60479種重新站隊方法.
(方法二)除序法:
第一步:9名學(xué)生站隊共有 種站隊方法;
第二步:3名女生有 種站隊順序;
故一共有 ﹣1=60480﹣1=60479種重新站隊方法.
(3)解:第一步:將6名男生分成3組,共有 種;
第二步:三名女生站好隊,然后將3組男生插入其中,共有 種
第三步:3組男生中每組男生站隊方法共有 種
故一共有:15×144×8=17280種站隊方法..
【解析】(1)設(shè)男生有x人,由 ,可解得,x=6,于是可知該小組中男女學(xué)生的人數(shù);(2)(方法一)按坐座位的方法:第一步:讓6名男生先從9個位置中選6個位置坐,第二步:余下的座位讓3個女生去坐,利用分步乘法計數(shù)原理可得答案;
(方法二)除序法:第一步:9名學(xué)生站隊共有 種站隊方法;第二步:3名女生有 種站隊順序,依題意可得答案;(3)第一步:將6名男生分成3組;第二步:三名女生站好隊,然后將3組男生插入其中,第三步:3組男生中每組男生站隊,利用分步乘法計數(shù)原理可得答案.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)y= +lg(﹣x2+4x﹣3)的定義域為M,
(1)求M;
(2)當(dāng)x∈M時,求函數(shù)f(x)=a2x+2+34x(a<﹣3)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)集合A={x|a﹣1<x<a+1},B={x|x<﹣1或x>2}.
(1)若A∩B=,求實數(shù)a的取值范圍;
(2)若A∪B=B,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的前n項和為Sn , 且n+1=1+Sn對一切正整數(shù)n恒成立.
(1)試求當(dāng)a1為何值時,數(shù)列{an}是等比數(shù)列,并求出它的通項公式;
(2)在(1)的條件下,當(dāng)n為何值時,數(shù)列 的前n項和Tn取得最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,已知sin2 .
(Ⅰ) 求角A的大。
(Ⅱ) 若b+c=2,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校一?荚嚁(shù)學(xué)測試成績的莖葉圖和頻率分布直方圖都受到不同程序的破壞,可見部分如下
試根據(jù)圖表中的信息解答下列問題:
(1)求全班的學(xué)生人數(shù)及分?jǐn)?shù)在 之間的頻數(shù);
(2)為快速了解學(xué)生的答題情況,老師按分層抽樣的方法從位于 , ,和 分?jǐn)?shù)段的試卷中抽取8份進(jìn)行分析,再從中任選2人進(jìn)行交流,求交流的2名學(xué)生中,恰有一名成績位于 分?jǐn)?shù)段的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)A是圓C:x2+y2+ax+4y+10=0上任意一點(diǎn),點(diǎn)A關(guān)于直線x+2y-1=0的對稱點(diǎn)也在圓C上,則實數(shù)a的值為( )
A.10
B.-10
C.-4
D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐P﹣ABCD中,PA⊥平面ABCD,底面ABCD為直角梯形,∠CDA=∠BAD=90°,AD=DC= ,AB=PA=2 ,且E為線段PB上的一動點(diǎn).
(1)若E為線段PB的中點(diǎn),求證:CE∥平面PAD;
(2)當(dāng)直線CE與平面PAC所成角小于 ,求PE長度的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的函數(shù)y=(m+6)x2+2(m﹣1)x+m+1恒有零點(diǎn).
(1)求m的范圍;
(2)若函數(shù)有兩個不同零點(diǎn),且其倒數(shù)之和為﹣4,求m的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com