若f(x)=
x
1+x
,f(1)+f(2)+f(
1
2
)+f(3)+f(
1
3
)+f(4)+f(
1
4
)
=
7
2
7
2
分析:根據(jù)函數(shù)的解析式,可以求得各項(xiàng),進(jìn)行求和;若觀察題目的特點(diǎn),考慮f(x)+f(
1
x
)
是否有規(guī)律,
解答:解:f(x)+f(
1
x
)
=
x
1+x
+
1
x
1+
1
x
=
x
1+x
+
1
1+x
=1
f(1)+f(2)+f(
1
2
)+f(3)+f(
1
3
)+f(4)+f(
1
4
)
=f(1)+[f(2)+f(
1
2
)]+[f(3)+f(
1
3
)]+[f(4)+f(
1
4
)]
=
1
2
+1+1+2
=
7
2

故答案為:
7
2
點(diǎn)評(píng):解析法是中學(xué)階段函數(shù)常見(jiàn)的表示法.根據(jù)解析式可求出任一函數(shù)值.本題還考查分析解決問(wèn)題,發(fā)掘規(guī)律應(yīng)用規(guī)律的能力
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某同學(xué)在研究函數(shù)f(x)=
x1+|x|
(x∈R)時(shí),分別給出下面幾個(gè)結(jié)論:
①f(-x)+f(x)=0在x∈R時(shí)恒成立;
②函數(shù)f(x)的值域?yàn)椋?1,1);
③若x1≠x2,則一定有f(x1)≠f(x2);
④函數(shù)g(x)=f(x)-x在R上有三個(gè)零點(diǎn).
其中正確結(jié)論的序號(hào)有
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•成都二模)對(duì)于定義在區(qū)間D上的函數(shù)f(x),若滿足對(duì)?x1,x2∈D,且x1<x2時(shí)都有 f(x1)≥f(x2),則稱函數(shù)f(x)為區(qū)間D上的“非增函數(shù)”.若f(x)為區(qū)間[0,1]上的“非增函數(shù)”且f(0)=l,f(x)+f(l-x)=l,又當(dāng)x∈[0,
1
4
]時(shí),f(x)≤-2x+1恒成立.有下列命題:
①?x∈[0,1],f(x)≥0;
②當(dāng)x1,x2∈[0,1]且x1≠x2,時(shí),f(x1)≠f(x)
③f(
1
8
)+f(
5
11
)+f(
7
13
)+f(
7
8
)=2;
④當(dāng)x∈[0,
1
4
]時(shí),f(f(x))≤f(x).
其中你認(rèn)為正確的所有命題的序號(hào)為
①③④
①③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:成都二模 題型:填空題

對(duì)于定義在區(qū)間D上的函數(shù)f(x),若滿足對(duì)?x1,x2∈D,且x1<x2時(shí)都有 f(x1)≥f(x2),則稱函數(shù)f(x)為區(qū)間D上的“非增函數(shù)”.若f(x)為區(qū)間[0,1]上的“非增函數(shù)”且f(0)=l,f(x)+f(l-x)=l,又當(dāng)x∈[0,
1
4
]時(shí),f(x)≤-2x+1恒成立.有下列命題:
①?x∈[0,1],f(x)≥0;
②當(dāng)x1,x2∈[0,1]且x1≠x2,時(shí),f(x1)≠f(x)
③f(
1
8
)+f(
5
11
)+f(
7
13
)+f(
7
8
)=2;
④當(dāng)x∈[0,
1
4
]時(shí),f(f(x))≤f(x).
其中你認(rèn)為正確的所有命題的序號(hào)為_(kāi)_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

若f(x)=
x
1+x
,f(1)+f(2)+f(
1
2
)+f(3)+f(
1
3
)+f(4)+f(
1
4
)
=______.

查看答案和解析>>

同步練習(xí)冊(cè)答案