已知雙曲線
x2
a2
-
y2
b2
=1
的兩焦點(diǎn)為F、F',若該雙曲線與拋物線y2=8x有一個(gè)公共的焦點(diǎn)F,且兩曲線的一個(gè)
交點(diǎn)為P,|PF|=5,則∠FPF'的大小為
 
(結(jié)果用反三角函數(shù)表示).
分析:由題意雙曲線與拋物線y2=8x有一個(gè)公共的焦點(diǎn)F,可求得雙曲線的兩個(gè)焦點(diǎn)的坐標(biāo),再由兩曲線的一個(gè)交點(diǎn)為P,|PF|=5,利用拋物線的性質(zhì)可以求得P點(diǎn)的坐標(biāo),再由兩點(diǎn)間距離公式可以求得P點(diǎn)到另一個(gè)焦點(diǎn)的距離,由此即可利用余弦定理求出∠FPF'的余弦值,用反三角函數(shù)表示出角即可.
解答:解:由題意知拋物線的焦點(diǎn)是(2,0),故雙曲線的焦點(diǎn)是(2,0)與(-2,0)
又兩曲線的一個(gè)交點(diǎn)為P,|PF|=5,由拋物線的性質(zhì)可求得P的橫坐標(biāo)為3,代入拋物線方程可求得P點(diǎn)的縱坐標(biāo)是±2
6

不妨令P(3,2
6
),由兩點(diǎn)間距離公式求得,P到另一個(gè)焦點(diǎn)的距離是7
在△FPF'中,由余弦定理得cos∠FPF'=
72+52-42
2×7×5
=
29
35

∴∠FPF'的大小為arccos
29
35

故答案為:arccos
29
35
點(diǎn)評(píng):本題考查圓錐曲線的綜合,求解本題的關(guān)鍵是根據(jù)拋物線的性質(zhì)求出雙曲線的兩個(gè)焦點(diǎn)的坐標(biāo)以及兩曲線交點(diǎn)的坐標(biāo),由此求出點(diǎn)P到兩個(gè)焦點(diǎn)的距離,在這個(gè)焦點(diǎn)三角形中利用余弦定理求出∠FPF'的余弦值,再用反三角函數(shù)表示,本題的解題思路要注意從圖形上推理,圓錐曲線的題解題時(shí)要注意圖形的作用,數(shù)形結(jié)合是解析幾何的根本.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線
x2
a2
-
y2
7
=1
,直線l過(guò)其左焦點(diǎn)F1,交雙曲線的左支于A、B兩點(diǎn),且|AB|=4,F(xiàn)2為雙曲線的右焦點(diǎn),△ABF2的周長(zhǎng)為20,則此雙曲線的離心率e=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1
的一個(gè)焦點(diǎn)與拋物線y2=4x的焦點(diǎn)重合,且該雙曲線的離心率為
5
,則該雙曲線的漸近線方程為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1(b>a>0)
,O為坐標(biāo)原點(diǎn),離心率e=2,點(diǎn)M(
5
3
)
在雙曲線上.
(1)求雙曲線的方程;
(2)若直線l與雙曲線交于P,Q兩點(diǎn),且
OP
OQ
=0
.問(wèn):
1
|OP|2
+
1
|OQ|2
是否為定值?若是請(qǐng)求出該定值,若不是請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)已知直線l:kx-y+1+2k=0(k∈R),則該直線過(guò)定點(diǎn)
(-2,1)
(-2,1)
;
(2)已知雙曲線
x2
a2
-
y2
b2
=1的一條漸近線方程為y=
4
3
x,則雙曲線的離心率為
5
3
5
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1
(a>0,b>0)滿足
a1
b
2
 |=0
,且雙曲線的右焦點(diǎn)與拋物線y2=4
3
x
的焦點(diǎn)重合,則該雙曲線的方程為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案