已知橢圓的兩焦點(diǎn)是F1(0,-1),F(xiàn)2(0,1),離心率e=數(shù)學(xué)公式
(1)求橢圓方程;
(2)若P在橢圓上,且|PF1|-|PF2|=1,求cos∠F1PF2

解:(1)依題意,c=1,=,
∴a=2,b=
∴橢圓方程為+=1;
(2)∵點(diǎn)P在橢圓上,
,
,
∴cos∠F1PF2==
分析:(1)由題意可求得c,a,b.從而可求得橢圓方程;
(2)由P在橢圓上,可得|PF1|+|PF2|=4,與已知條件聯(lián)立可求得|PF1|與|PF2|,再利用余弦定理即可求得答案.
點(diǎn)評(píng):本題考查橢圓的簡(jiǎn)單性質(zhì),考查余弦定理,著重考查方程思想與運(yùn)算能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本小題12分)

        已知橢圓的左焦點(diǎn)是長(zhǎng)軸的一個(gè)四等分點(diǎn),點(diǎn)A、B分別為橢圓的左、右頂點(diǎn),過(guò)點(diǎn)F且不與y軸垂直的直線交橢圓于C、D兩點(diǎn),記直線AD、BC的斜率分別為

   (1)當(dāng)點(diǎn)D到兩焦點(diǎn)的距離之和為4,直線軸時(shí),求的值;

   (2)求的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本小題12分)

        已知橢圓的左焦點(diǎn)是長(zhǎng)軸的一個(gè)四等分點(diǎn),點(diǎn)A、B分別為橢圓的左、右頂點(diǎn),過(guò)點(diǎn)F且不與y軸垂直的直線交橢圓于C、D兩點(diǎn),記直線AD、BC的斜率分別為

   (1)當(dāng)點(diǎn)D到兩焦點(diǎn)的距離之和為4,直線軸時(shí),求的值;

   (2)求的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本小題12分)

        已知橢圓的左焦點(diǎn)是長(zhǎng)軸的一個(gè)四等分點(diǎn),點(diǎn)A、B分別為橢圓的左、右頂點(diǎn),過(guò)點(diǎn)F且不與y軸垂直的直線交橢圓于C、D兩點(diǎn),記直線AD、BC的斜率分別為

   (1)當(dāng)點(diǎn)D到兩焦點(diǎn)的距離之和為4,直線軸時(shí),求的值;

   (2)求的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本小題12分)

        已知橢圓的左焦點(diǎn)是長(zhǎng)軸的一個(gè)四等分點(diǎn),點(diǎn)A、B分別為橢圓的左、右頂點(diǎn),過(guò)點(diǎn)F且不與y軸垂直的直線交橢圓于C、D兩點(diǎn),記直線AD、BC的斜率分別為

   (1)當(dāng)點(diǎn)D到兩焦點(diǎn)的距離之和為4,直線軸時(shí),求的值;

   (2)求的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012年內(nèi)蒙古包頭市高考數(shù)學(xué)三模試卷(文科)(解析版) 題型:解答題

已知橢圓的右焦點(diǎn)為F(2,0),M為橢圓的上頂點(diǎn),O為坐標(biāo)原點(diǎn),且△MOF是等腰直角三角形.
(Ⅰ)求橢圓的方程;
(Ⅱ)過(guò)點(diǎn)M分別作直線MA,MB交橢圓于A,B兩點(diǎn),設(shè)兩直線的斜率分別為k1,k2,且k1+k2=8,證明:直線AB過(guò)定點(diǎn)().

查看答案和解析>>

同步練習(xí)冊(cè)答案