(2011•資陽一模)如圖展示了一個由區(qū)間(0,1)到實數(shù)集R的映射過程:區(qū)間(0,1)中的實數(shù)m對應數(shù)軸上的點M,如圖①;將線段AB圍成一個圓,使兩端點A、B恰好重合,如圖②;再將這個圓放在平面直角坐標系中,使其圓心在y軸上,點A的坐標為(0,1),在圖形變化過程中,圖①中線段AM的長度對應于圖③中的弧ADM的長度,如圖③.圖③中直線AM與x軸交于點N(n,0),則m的象就是n,記作f(m)=n.

給出下列命題:
①f(
1
4
)=1;
②f(x)是奇函數(shù);
③f(x)在定義域上單調遞增;
④f(x)的圖象關于點(
1
2
,0)對稱. 
則所有真命題的序號是
③④
③④
.(填出所有真命題的序號)
分析:①當m=
1
4
時,此時M恰好處在左半圓弧的中點上,此時可以求出對應直線AM的方程,進而可求n.
②由定義域不關于原點對稱,可判斷函數(shù)不是奇函數(shù).
③在圓上,當點M在圓上運動時,N由x的負半軸向正半軸運動時,可判斷函數(shù)的單調性.
④根據(jù)點M的運動過程,可知函數(shù)的對稱性.
解答:解:①因為AB=1,所以圓的周長為1,由2πr=1,所以解得圓的半徑r=
1
,所以圓心坐標為(0,1-
1
),當m=
1
4
時,此時M恰好處在左半圓弧的中點上,此時M的坐標為(-
1
,1-
1
),對應直線AM的方程為y=x+1.當y=0時,解得x=-1,即N(-1,0),所以n=-1,即f(
1
4
)=-1,所以①錯誤.
②由定義可知函數(shù)的定義域為(0,1),關于原點不對稱,所以函數(shù)f(x)為非奇非偶函數(shù),所以②錯誤.
③由圖3可以看出,m由0增大到1時,M由A運動到B,此時N由x的負半軸向正半軸運動,由此知,N點的橫坐標逐漸變大,故f(x)在定義域上單調遞增.所以③正確.
④由圖3可以看出,當M點的位置離中間位置相等時,N點關于y軸對稱,即此時函數(shù)值互為相反數(shù),故可知f(x)的圖象關于點(
1
2
,0)對稱,所以④正確.
故答案為:③④.
點評:本題考查了函數(shù)的實際應用,考查學生的閱讀和分析能力.本題難度較大,正確閱讀題意是解題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2011•資陽一模)已知函數(shù)f(x)=|2x-1|+|x+2|+2x(x∈R),
(Ⅰ)求函數(shù)f(x)的最小值;
(Ⅱ)已知m∈R,命題p:關于x的不等式f(x)≥m2+2m-2對任意x∈R恒成立;命題q:指數(shù)函數(shù)y=(m2-1)x是增函數(shù).若“p或q”為真,“p且q”為假,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•資陽一模)△ABC中,∠A=
π
3
,BC=3,AB=
6
,則∠C=
π
4
π
4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•資陽一模)“cosθ<0且tanθ>0”是“θ為第三角限角”的( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•資陽一模)已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π)在x=
π
6
取得最大值2,方程f(x)=0的兩個根為x1、x2,且|x1-x2|的最小值為π.
(1)求f(x);
(2)將函數(shù)y=f(x)圖象上各點的橫坐標壓縮到原來的
1
2
,縱坐標不變,得到函數(shù)y=g(x)的圖象,求函數(shù)g(x)在[-
π
4
,
π
4
]上的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•資陽一模)函數(shù)f(x)=ax3-6ax2+3bx+b,其圖象在x=2處的切線方程為3x+y-11=0.
(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)若函數(shù)y=f(x)的圖象與y=
13
f′(x)+5x+m
的圖象有三個不同的交點,求實數(shù)m的取值范圍;
(Ⅲ)是否存在點P,使得過點P的直線若能與曲線y=f(x)圍成兩個封閉圖形,則這兩個封閉圖形的面積相等?若存在,求出P點的坐標;若不存在,說明理由.

查看答案和解析>>

同步練習冊答案