隨機(jī)變量(0,1),記(x)=P(<x),則下列式子中錯誤的是

[  ]

A.(0)=0.5

B.(a)+(-a)=1

C.P(||<a)=2(a)-1

D.P(||>a)=1-(a)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

為考察藥物A預(yù)防B疾病的效果,進(jìn)行動物試驗,得到如下藥物效果試驗的列聯(lián)表:
患者 未患者 合計
服用藥 10 45 55
沒服用藥 20 30 50
合計 30 75 105
經(jīng)計算,隨機(jī)變量K2=6.1,請利用下表和獨(dú)立性檢驗的思想方法,估計有
97.5%
97.5%
(用百分?jǐn)?shù)表示)的把握認(rèn)為“藥物A與可預(yù)防疾病B有關(guān)系”.
p(K2≥k) 0.50 0.40 0.25 0.15 0.10 0.05 0.025 0.01 0.005 0.001
k 0.46 0.71 1.32 2.07 2.71 3.84 5.024 6.635 7.879 10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(理科)設(shè)ξ是一個離散型隨機(jī)變量.
(1)若ξ~B(n,p),且E(3ξ+2)=9.2,D(3ξ+2)=12.96,則n、p的值分別為
6
6
、
0.4
0.4
;
(2)若ξ的分布列如表,則Eξ=
3-3
3
4
3-3
3
4
ξ -1 0 1
P
3
4
1-3a 2a2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•鹽城二模)甲,乙,丙三人投籃,甲的命中率為p,乙,丙的命中率均為q(p,q∈(0,1)).現(xiàn)每人獨(dú)立投籃一次,記命中的總次數(shù)為隨機(jī)變量ξ.
(1)當(dāng)p=q=
12
時,求數(shù)學(xué)期望E(ξ);
(2)當(dāng)p+q=1時,試用p表示ξ的數(shù)學(xué)期望E(ξ).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2007•武漢模擬)在一個單位中普查某種疾病,600個人去驗血,對這些人的血的化驗可以用兩種方法進(jìn)行:
方法一:每個人的血分別化驗,這時需要化驗600次;
方法二:把每個人的血樣分成兩份,取k(k≥2)個人的血樣各一份混在一起進(jìn)行化驗,如果結(jié)果是陰性的,那么對這k個人只作一次檢驗就夠了;如果結(jié)果陽性的,那么再對這k個人的另一份血樣逐個化驗,這時對這k個人共需作k+1次化驗.
假定對所有的人來說,化驗結(jié)果是陽性的概率是0.1,而且這些人的反應(yīng)是獨(dú)立的.將每個人的血樣所需的檢驗次數(shù)作為隨機(jī)變量ξ.
(1)寫出方法二中隨機(jī)變量ξ的分布列,并求數(shù)學(xué)期望Eξ(用k表示);
(2)現(xiàn)有方法一和方法二中k分別取3、4、5共四種方案,請判斷哪種方案最好,并說明理由.(參考數(shù)據(jù):取0.93=0.729,0.94=0.656,0.95=0.591)

查看答案和解析>>

同步練習(xí)冊答案