已知x軸上有一點(diǎn)列P1,P2,P3,…,Pn,…,且當(dāng)n≥2時(shí),點(diǎn)Pn是把線段Pn-1Pn+1作n等分的分點(diǎn)中最靠近Pn+1的點(diǎn),設(shè)線段P1P2,P2P3,…,PnPn+1的長度分別為a1,a2,a3,…,an,其中a1=1.
(I)寫出a2,a3和an(n≥2,n∈N*)的表達(dá)式;
(II)記,證明:
【答案】分析:(I)由已知Pn-1Pn=(n-1)PnPn+1,令n=2,P1P2=P2P3,故a2=1.同理,,,由此能求出an(n≥2,n∈N*)的表達(dá)式.
(II)由,n∈N*,知,當(dāng)n≥2時(shí),==,由此能夠證明
解答:解:(I)由已知Pn-1Pn=(n-1)PnPn+1,
令n=2,P1P2=P2P3
∴a2=1.
同理,,

=…==,(n≥2).
(II)∵,n∈N*
∴當(dāng)n=1時(shí),,
當(dāng)n≥2時(shí),==
==,
∴b1+b2+b3+…+bn
=+…+()]
=
=(n≥2).
,

點(diǎn)評(píng):本題考查數(shù)列與不等式的綜合,考查運(yùn)算求解能力,推理論證能力;考查化歸與轉(zhuǎn)化思想.對(duì)數(shù)學(xué)思維的要求比較高,有一定的探索性.綜合性強(qiáng),難度大,是高考的重點(diǎn).解題時(shí)要認(rèn)真審題,仔細(xì)解答.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:吉林省吉林一中2011-2012學(xué)年高三階段驗(yàn)收試題數(shù)學(xué) 題型:解答題

 

(理)已知數(shù)列{an}的前n項(xiàng)和,且=1,

.

(I)求數(shù)列{an}的通項(xiàng)公式;

(II)已知定理:“若函數(shù)f(x)在區(qū)間D上是凹函數(shù),x>y(x,y∈D),且f’(x)存在,則有

< f’(x)”.若且函數(shù)y=xn+1在(0,+∞)上是凹函數(shù),試判斷bn與bn+1的大;

(III)求證:≤bn<2.

(文)如圖,|AB|=2,O為AB中點(diǎn),直線過B且垂直于AB,過A的動(dòng)直線與交于點(diǎn)C,點(diǎn)M在線段AC上,滿足=.

(I)求點(diǎn)M的軌跡方程;

(II)若過B點(diǎn)且斜率為- 的直線與軌跡M交于

         點(diǎn)P,點(diǎn)Q(t,0)是x軸上任意一點(diǎn),求當(dāng)ΔBPQ為

         銳角三角形時(shí)t的取值范圍.

 

 

 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案